Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 56(13): 5261-74, 2013 Jul 11.
Article in English | MEDLINE | ID: mdl-23713656

ABSTRACT

Herein, we describe our strategy to design metabolically stable γ-secretase inhibitors which are selective for inhibition of Aß generation over Notch. We highlight our synthetic strategy to incorporate diversity and chirality. Compounds 30 (ELND006) and 34 (ELND007) both entered human clinical trials. The in vitro and in vivo characteristics for these two compounds are described. A comparison of inhibition of Aß generation in vivo between 30, 34, Semagacestat 41, Begacestat 42, and Avagacestat 43 in mice is made. 30 lowered Aß in the CSF of healthy human volunteers.


Subject(s)
Amyloid Precursor Protein Secretases/antagonists & inhibitors , Amyloid beta-Peptides/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Heterocyclic Compounds, 3-Ring/pharmacology , Pyrazoles/pharmacology , Quinolines/pharmacology , Receptors, Notch/antagonists & inhibitors , Sulfonamides/pharmacology , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Peptides/cerebrospinal fluid , Amyloid beta-Peptides/metabolism , Animals , Area Under Curve , Basic Helix-Loop-Helix Transcription Factors/genetics , Dogs , Dose-Response Relationship, Drug , Drug Design , Drug Stability , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacokinetics , Gene Expression/drug effects , Heterocyclic Compounds, 3-Ring/chemistry , Homeodomain Proteins/genetics , Humans , Male , Mice , Microsomes, Liver/drug effects , Microsomes, Liver/metabolism , Models, Chemical , Molecular Structure , Pyrazoles/chemical synthesis , Pyrazoles/pharmacokinetics , Quinolines/chemical synthesis , Quinolines/pharmacokinetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Receptors, Notch/metabolism , Structure-Activity Relationship , Sulfonamides/chemistry , Time Factors , Transcription Factor HES-1
2.
Bioorg Med Chem Lett ; 21(12): 3715-20, 2011 Jun 15.
Article in English | MEDLINE | ID: mdl-21571529

ABSTRACT

Herein we describe the structure-activity relationship (SAR) of amino-caprolactam analogs derived from amino-caprolactam benzene sulfonamide 1, highlighting affects on the potency of γ-secretase inhibition, selectivity for the inhibition of APP versus Notch processing by γ-secretase and selected pharmakokinetic properties. Amino-caprolactams that are efficacious in reducing the cortical Aß(x-40) levels in FVB mice via a single 100 mpk IP dose are highlighted.


Subject(s)
Amyloid Precursor Protein Secretases/antagonists & inhibitors , Caprolactam/analogs & derivatives , Enzyme Inhibitors/pharmacology , Alzheimer Disease/drug therapy , Amyloid beta-Peptides/metabolism , Animals , Caprolactam/chemical synthesis , Caprolactam/chemistry , Caprolactam/pharmacology , Enzyme Activation/drug effects , Enzyme Inhibitors/chemical synthesis , Infusions, Parenteral , Inhibitory Concentration 50 , Mice , Molecular Structure , Peptide Fragments/metabolism
3.
Alzheimers Res Ther ; 2(6): 36, 2010 Dec 29.
Article in English | MEDLINE | ID: mdl-21190552

ABSTRACT

INTRODUCTION: Inhibition of gamma-secretase presents a direct target for lowering Aß production in the brain as a therapy for Alzheimer's disease (AD). However, gamma-secretase is known to process multiple substrates in addition to amyloid precursor protein (APP), most notably Notch, which has limited clinical development of inhibitors targeting this enzyme. It has been postulated that APP substrate selective inhibitors of gamma-secretase would be preferable to non-selective inhibitors from a safety perspective for AD therapy. METHODS: In vitro assays monitoring inhibitor potencies at APP γ-site cleavage (equivalent to Aß40), and Notch ε-site cleavage, in conjunction with a single cell assay to simultaneously monitor selectivity for inhibition of Aß production vs. Notch signaling were developed to discover APP selective gamma-secretase inhibitors. In vivo efficacy for acute reduction of brain Aß was determined in the PDAPP transgene model of AD, as well as in wild-type FVB strain mice. In vivo selectivity was determined following seven days x twice per day (b.i.d.) treatment with 15 mg/kg/dose to 1,000 mg/kg/dose ELN475516, and monitoring brain Aß reduction vs. Notch signaling endpoints in periphery. RESULTS: The APP selective gamma-secretase inhibitors ELN318463 and ELN475516 reported here behave as classic gamma-secretase inhibitors, demonstrate 75- to 120-fold selectivity for inhibiting Aß production compared with Notch signaling in cells, and displace an active site directed inhibitor at very high concentrations only in the presence of substrate. ELN318463 demonstrated discordant efficacy for reduction of brain Aß in the PDAPP compared with wild-type FVB, not observed with ELN475516. Improved in vivo safety of ELN475516 was demonstrated in the 7d repeat dose study in wild-type mice, where a 33% reduction of brain Aß was observed in mice terminated three hours post last dose at the lowest dose of inhibitor tested. No overt in-life or post-mortem indications of systemic toxicity, nor RNA and histological end-points indicative of toxicity attributable to inhibition of Notch signaling were observed at any dose tested. CONCLUSIONS: The discordant in vivo activity of ELN318463 suggests that the potency of gamma-secretase inhibitors in AD transgenic mice should be corroborated in wild-type mice. The discovery of ELN475516 demonstrates that it is possible to develop APP selective gamma-secretase inhibitors with potential for treatment for AD.

4.
Bioorg Med Chem Lett ; 20(24): 7303-7, 2010 Dec 15.
Article in English | MEDLINE | ID: mdl-21071223

ABSTRACT

From high throughput screening, we discovered compound 1, the prototype for a series of disubstituted thiophene inhibitors of JNK which is selective towards closely related MAP kinases p38 and Erk2. Herein we describe the evolution of these compounds to a novel class of thiophene and thiazole JNK inhibitors that retain favorable solubility, permeability, and P-gp properties for development as CNS agents for treatment of neurodegeneration. Compound 61 demonstrated JNK3 IC(50)=77 nM and retained the excellent broad kinase selectivity observed for the series.


Subject(s)
JNK Mitogen-Activated Protein Kinases/antagonists & inhibitors , Protein Kinase Inhibitors/chemical synthesis , Quinolines/chemical synthesis , Thiazoles/chemistry , Thiophenes/chemistry , Animals , Drug Design , Humans , JNK Mitogen-Activated Protein Kinases/metabolism , Mice , Microsomes, Liver/metabolism , Mitogen-Activated Protein Kinase 10/antagonists & inhibitors , Mitogen-Activated Protein Kinase 10/metabolism , Mitogen-Activated Protein Kinase 8/antagonists & inhibitors , Mitogen-Activated Protein Kinase 8/metabolism , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Quinolines/chemistry , Quinolines/pharmacology , Structure-Activity Relationship , Thiazoles/chemical synthesis , Thiazoles/pharmacology , Thiophenes/chemical synthesis , Thiophenes/pharmacology
7.
J Med Chem ; 50(21): 5161-7, 2007 Oct 18.
Article in English | MEDLINE | ID: mdl-17880055

ABSTRACT

The B1 receptor is an attractive target for the treatment of pain and inflammation. A series of 3-carboxamido-5-phenacylamino pyrazole B1 receptor antagonists are described that exhibit good potency against B1 and high selectivity over B2. Initially, N-unsubstituted pyrazoles were studied, but these compounds suffered from extensive glucuronidation in primates. This difficulty could be surmounted by the use of N-substituted pyrazoles. Optimization efforts culminated in compound 41, which has high receptor potency and metabolic stability.


Subject(s)
Benzamides/chemical synthesis , Bradykinin B1 Receptor Antagonists , Pyrazoles/chemical synthesis , Benzamides/chemistry , Benzamides/pharmacology , Crystallography, X-Ray , Fibroblasts/metabolism , Humans , In Vitro Techniques , Lung/cytology , Molecular Structure , Pyrazoles/chemistry , Pyrazoles/pharmacology , Radioligand Assay , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...