Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Med Chem Lett ; 14(12): 1673-1681, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38116446

ABSTRACT

SHP2 has emerged as an important target for oncology small-molecule drug discovery. As a nonreceptor tyrosine phosphatase within the MAPK pathway, it has been shown to control cell growth, differentiation, and oncogenic transformation. We used structure-based design to find a novel class of potent and orally bioavailable SHP2 inhibitors. Our efforts led to the discovery of the 5-azaquinoxaline as a new core for developing this class of compounds. Optimization of the potency and properties of this scaffold generated compound 30, that exhibited potent in vitro SHP2 inhibition and showed excellent in vivo efficacy and pharmacokinetic profile.

2.
Cancer Discov ; 13(8): 1789-1801, 2023 08 04.
Article in English | MEDLINE | ID: mdl-37269335

ABSTRACT

Rationally targeted therapies have transformed cancer treatment, but many patients develop resistance through bypass signaling pathway activation. PF-07284892 (ARRY-558) is an allosteric SHP2 inhibitor designed to overcome bypass-signaling-mediated resistance when combined with inhibitors of various oncogenic drivers. Activity in this setting was confirmed in diverse tumor models. Patients with ALK fusion-positive lung cancer, BRAFV600E-mutant colorectal cancer, KRASG12D-mutant ovarian cancer, and ROS1 fusion-positive pancreatic cancer who previously developed targeted therapy resistance were treated with PF-07284892 on the first dose level of a first-in-human clinical trial. After progression on PF-07284892 monotherapy, a novel study design allowed the addition of oncogene-directed targeted therapy that had previously failed. Combination therapy led to rapid tumor and circulating tumor DNA (ctDNA) responses and extended the duration of overall clinical benefit. SIGNIFICANCE: PF-07284892-targeted therapy combinations overcame bypass-signaling-mediated resistance in a clinical setting in which neither component was active on its own. This provides proof of concept of the utility of SHP2 inhibitors in overcoming resistance to diverse targeted therapies and provides a paradigm for accelerated testing of novel drug combinations early in clinical development. See related commentary by Hernando-Calvo and Garralda, p. 1762. This article is highlighted in the In This Issue feature, p. 1749.


Subject(s)
Lung Neoplasms , Protein-Tyrosine Kinases , Humans , Protein-Tyrosine Kinases/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Oncogenes , Patient-Centered Care
3.
Bioorg Med Chem ; 28(1): 115232, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31818630

ABSTRACT

Glucose flux through glucokinase (GK) controls insulin release from the pancreas in response to high levels of glucose. Flux through GK is also responsible for reducing hepatic glucose output. Since many individuals with type 2 diabetes appear to have an inadequacy or defect in one or both of these processes, identifying compounds that can activate GK could provide a therapeutic benefit. Herein we report the further structure activity studies of a novel series of glucokinase activators (GKA). These studies led to the identification of pyridine 72 as a potent GKA that lowered post-prandial glucose in normal C57BL/6J mice, and after 14d dosing in ob/ob mice.


Subject(s)
Enzyme Activators/chemistry , Glucokinase/chemistry , Hypoglycemic Agents/chemistry , Animals , Binding Sites , Blood Glucose/analysis , Crystallography, X-Ray , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Drug Design , Drug Evaluation, Preclinical , Enzyme Activators/metabolism , Enzyme Activators/therapeutic use , Glucokinase/metabolism , Glucose Tolerance Test , Hypoglycemic Agents/metabolism , Hypoglycemic Agents/therapeutic use , Kinetics , Mice , Mice, Inbred C57BL , Molecular Dynamics Simulation , Structure-Activity Relationship , Thiadiazoles/chemistry , Thiadiazoles/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...