Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Neurosci ; 32(46): 16172-80, 2012 Nov 14.
Article in English | MEDLINE | ID: mdl-23152601

ABSTRACT

Receptive fields (RFs) of cortical sensory neurons increase in size along consecutive processing stages. When multiple stimuli are present in a large visual RF, a neuron typically responds to an attended stimulus as if only that stimulus were present. However, the mechanism by which a neuron selectively responds to a subset of its inputs while discarding all others is unknown. Here, we show that neurons can switch between subsets of their afferent inputs by highly specific modulations of interareal gamma-band phase-coherence (PC). We measured local field potentials, single- and multi-unit activity in two male macaque monkeys (Macaca mulatta) performing an attention task. Two small stimuli were placed on a screen; the stimuli were driving separate local V1 populations, while both were driving the same local V4 population. In each trial, we cued one of the two stimuli to be attended. We found that gamma-band PC of the local V4 population with multiple subpopulations of its V1 input was differentially modulated. It was high with the input subpopulation representing the attended stimulus, while simultaneously it was very low between the same V4 population and the other input-providing subpopulation representing the irrelevant stimulus. These differential modulations, which depend on stimulus relevance, were also found in the locking of spikes from V4 neurons to the gamma-band oscillations of the V1 input subpopulations. This rapid, highly specific interareal locking provides neurons with a powerful dynamic routing mechanism to select and process only the currently relevant signals.


Subject(s)
Cerebral Cortex/physiology , Sensory Receptor Cells/physiology , Visual Fields/physiology , Algorithms , Animals , Attention/physiology , Cerebral Cortex/cytology , Cortical Synchronization , Form Perception/physiology , Macaca mulatta , Male , Photic Stimulation , Psychomotor Performance/physiology , Visual Cortex/physiology
2.
PLoS Comput Biol ; 8(5): e1002520, 2012.
Article in English | MEDLINE | ID: mdl-22654653

ABSTRACT

For processing and segmenting visual scenes, the brain is required to combine a multitude of features and sensory channels. It is neither known if these complex tasks involve optimal integration of information, nor according to which objectives computations might be performed. Here, we investigate if optimal inference can explain contour integration in human subjects. We performed experiments where observers detected contours of curvilinearly aligned edge configurations embedded into randomly oriented distractors. The key feature of our framework is to use a generative process for creating the contours, for which it is possible to derive a class of ideal detection models. This allowed us to compare human detection for contours with different statistical properties to the corresponding ideal detection models for the same stimuli. We then subjected the detection models to realistic constraints and required them to reproduce human decisions for every stimulus as well as possible. By independently varying the four model parameters, we identify a single detection model which quantitatively captures all correlations of human decision behaviour for more than 2000 stimuli from 42 contour ensembles with greatly varying statistical properties. This model reveals specific interactions between edges closely matching independent findings from physiology and psychophysics. These interactions imply a statistics of contours for which edge stimuli are indeed optimally integrated by the visual system, with the objective of inferring the presence of contours in cluttered scenes. The recurrent algorithm of our model makes testable predictions about the temporal dynamics of neuronal populations engaged in contour integration, and it suggests a strong directionality of the underlying functional anatomy.


Subject(s)
Form Perception/physiology , Models, Neurological , Models, Statistical , Pattern Recognition, Physiological/physiology , Perceptual Masking/physiology , Computer Simulation , Humans
SELECTION OF CITATIONS
SEARCH DETAIL