Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 2(10): 7194-7202, 2017 Oct 31.
Article in English | MEDLINE | ID: mdl-31457298

ABSTRACT

We report the direct integration and efficient coupling of nitrogen vacancy (NV) color centers in diamond nanophotonic structures into a fiber-based photonic architecture at cryogenic temperatures. NV centers are embedded in diamond micro-waveguides (µWGs), which are coupled to fiber tapers. Fiber tapers have low-loss connection to single-mode optical fibers and hence enable efficient integration of NV centers into optical fiber networks. We numerically optimize the parameters of the µWG-fiber-taper devices designed particularly for use in cryogenic experiments, resulting in 35.6% coupling efficiency, and experimentally demonstrate cooling of these devices to the liquid helium temperature of 4.2 K without loss of the fiber transmission. We observe sharp zero-phonon lines in the fluorescence of NV centers through the pigtailed fibers at 100 K. The optimized devices with high photon coupling efficiency and the demonstration of cooling to cryogenic temperatures are an important step to realize fiber-based quantum nanophotonic interfaces using diamond spin defect centers.

2.
Sci Rep ; 6: 28877, 2016 07 01.
Article in English | MEDLINE | ID: mdl-27364604

ABSTRACT

Tremendous enhancement of light-matter interaction in plasmonic-dielectric hybrid devices allows for non-linearities at the level of single emitters and few photons, such as single photon transistors. However, constructing integrated components for such devices is technologically extremely challenging. We tackle this task by lithographically fabricating an on-chip plasmonic waveguide-structure connected to far-field in- and out-coupling ports via low-loss dielectric waveguides. We precisely describe our lithographic approach and characterize the fabricated integrated chip. We find excellent agreement with rigorous numerical simulations. Based on these findings we perform a numerical optimization and calculate concrete numbers for a plasmonic single-photon transistor.

3.
Nano Lett ; 15(5): 3024-9, 2015 May 13.
Article in English | MEDLINE | ID: mdl-25816112

ABSTRACT

Finding new solid state defect centers in novel host materials is crucial for realizing integrated hybrid quantum photonic devices. We present a preparation method for defect centers with photostable bright single photon emission in zinc oxide, a material with promising properties in terms of processability, availability, and applications. A detailed optical study reveals a complex dynamic of intensity fluctuations at room temperature. Measurements at cryogenic temperatures show very sharp (<60 GHz) zero phonon lines (ZPLs) at 580 nm to  620 nm (≈ 2.0 eV) with frozen out fast fluctuations. Remaining discrete jumps of the ZPL, which depend on the excitation power, are observed. The low temperature results will narrow down speculations on the origin of visible-near-infrared (NIR) wavelength defect emission in zinc oxide and provide a basis for improved theoretical models.

SELECTION OF CITATIONS
SEARCH DETAIL
...