Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 3628, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38684651

ABSTRACT

In tissue formation and repair, the epithelium undergoes complex patterns of motion driven by the active forces produced by each cell. Although the principles governing how the forces evolve in time are not yet clear, it is often assumed that the contractile stresses within the cell layer align with the axis defined by the body of each cell. Here, we simultaneously measured the orientations of the cell shape and the cell-generated contractile stresses, observing correlated, dynamic domains in which the stresses were systematically misaligned with the cell body. We developed a continuum model that decouples the orientations of contractile stress and cell body. The model recovered the spatial and temporal dynamics of the regions of misalignment in the experiments. These findings reveal that the cell controls its contractile forces independently from its shape, suggesting that the physical rules relating cell forces and cell shape are more flexible than previously thought.


Subject(s)
Cell Shape , Stress, Mechanical , Animals , Models, Biological , Biomechanical Phenomena , Madin Darby Canine Kidney Cells , Dogs , Epithelial Cells
2.
Proc Natl Acad Sci U S A ; 120(30): e2219708120, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37459530

ABSTRACT

Interaction between active materials and the boundaries of geometrical confinement is key to many emergent phenomena in active systems. For living active matter consisting of animal cells or motile bacteria, the confinement boundary is often a deformable interface, and it has been unclear how activity-induced interface dynamics might lead to morphogenesis and pattern formation. Here, we studied the evolution of bacterial active matter confined by a deformable boundary. We found that an ordered morphological pattern emerged at the interface characterized by periodically spaced interfacial protrusions; behind the interfacial protrusions, bacterial swimmers self-organized into multicellular clusters displaying +1/2 nematic defects. Subsequently, a hierarchical sequence of transitions from interfacial protrusions to creeping branches allowed the bacterial active drop to rapidly invade surrounding space with a striking self-similar branch pattern. We found that this interface patterning is geometrically controlled by the local curvature of the interface, a phenomenon we denote as collective curvature sensing. Using a continuum active model, we revealed that the collective curvature sensing arises from enhanced active stresses near high-curvature regions, with the active length scale setting the characteristic distance between the interfacial protrusions. Our findings reveal a protrusion-to-branch transition as a unique mode of active matter invasion and suggest a strategy to engineer pattern formation of active materials.


Subject(s)
Bacteria
3.
J R Soc Interface ; 20(199): 20220719, 2023 02.
Article in English | MEDLINE | ID: mdl-36872917

ABSTRACT

Coordinated rotational motion is an intriguing, yet still elusive mode of collective cell migration, which is relevant in pathological and morphogenetic processes. Most of the studies on this topic have been carried out on epithelial cells plated on micropatterned substrates, where cell motion is confined in regions of well-defined shapes coated with extracellular matrix adhesive proteins. The driver of collective rotation in such conditions has not been clearly elucidated, although it has been speculated that spatial confinement can play an essential role in triggering cell rotation. Here, we study the growth of epithelial cell colonies freely expanding (i.e. with no physical constraints) on the surface of cell culture plates and focus on collective cell rotation in such conditions, a case which has received scarce attention in the literature. One of the main findings of our work is that coordinated cell rotation spontaneously occurs in cell clusters in the free growth regime, thus implying that cell confinement is not necessary to elicit collective rotation as previously suggested. The extent of collective rotation was size and shape dependent: a highly coordinated disc-like rotation was found in small cell clusters with a round shape, while collective rotation was suppressed in large irregular cell clusters generated by merging of different clusters in the course of their growth. The angular motion was persistent in the same direction, although clockwise and anticlockwise rotations were equally likely to occur among different cell clusters. Radial cell velocity was quite low as compared to the angular velocity, in agreement with the free expansion regime where cluster growth is essentially governed by cell proliferation. A clear difference in morphology was observed between cells at the periphery and the ones in the core of the clusters, the former being more elongated and spread out as compared to the latter. Overall, our results, to our knowledge, provide the first quantitative and systematic evidence that coordinated cell rotation does not require a spatial confinement and occurs spontaneously in freely expanding epithelial cell colonies, possibly as a mechanism for the system.


Subject(s)
Cell Culture Techniques , Epithelial Cells , Cell Movement , Cell Proliferation , Extracellular Matrix Proteins
5.
Phys Rev Lett ; 128(4): 048001, 2022 Jan 28.
Article in English | MEDLINE | ID: mdl-35148135

ABSTRACT

We use numerical simulations and linear stability analysis to study an active nematic layer where the director is allowed to point out of the plane. Our results highlight the difference between extensile and contractile systems. Contractile stress suppresses the flows perpendicular to the layer and favors in-plane orientations of the director. By contrast extensile stress promotes instabilities that can turn the director out of the plane, leaving behind a population of distinct, in-plane regions that continually elongate and divide. This supports extensile forces as a mechanism for the initial stages of layer formation in living systems, and we show that a planar drop with extensile (contractile) activity grows into three dimensions (remains in two dimensions). The results also explain the propensity of disclination lines in three dimensional active nematics to be of twist type in extensile or wedge type in contractile materials.

6.
Soft Matter ; 17(9): 2500-2511, 2021 Mar 11.
Article in English | MEDLINE | ID: mdl-33503081

ABSTRACT

We use analytic arguments and numerical solutions of the continuum, active nematohydrodynamic equations to study how friction alters the behaviour of active nematics. Concentrating on the case where there is nematic ordering in the passive limit, we show that, as the friction is increased, memory effects become more prominent and +1/2 topological defects leave increasingly persistent trails in the director field as they pass. The trails are preferential sites for defect formation and they tend to impose polar order on any new +1/2 defects. In the absence of noise and for high friction, it becomes very difficult to create defects, but trails formed by any defects present at the beginning of the simulations persist and organise into parallel arch-like patterns in the director field. We show aligned arches of equal width are approximate steady state solutions of the equations of motion which co-exist with the nematic state. We compare our results to other models in the literature, in particular dry systems with no hydrodynamics, where trails, arches and polar defect ordering have also been observed.

7.
Phys Rev Lett ; 125(21): 218004, 2020 Nov 20.
Article in English | MEDLINE | ID: mdl-33275020

ABSTRACT

We use continuum simulations to study the impact of friction on the ordering of defects in an active nematic. Even in a frictionless system, +1/2 defects tend to align side by side and orient antiparallel reflecting their propensity to form, and circulate with, flow vortices. Increasing friction enhances the effectiveness of the defect-defect interactions, and defects form dynamically evolving, large-scale, positionally, and orientationally ordered structures, which can be explained as a competition between hexagonal packing, preferred by the -1/2 defects, and rectangular packing, preferred by the +1/2 defects.

8.
Soft Matter ; 15(15): 3248-3255, 2019 Apr 10.
Article in English | MEDLINE | ID: mdl-30916708

ABSTRACT

Ordered phases in active suspensions of polar swimmers are under long-wavelength hydrodynamic mediated instabilities. In this article, we show that chemical molecules dissolved in aqueous suspensions, as an unavoidable part of most wet active systems, can mediate long-range interactions and subsequently stabilize the polar phase. Chemoattractants in living suspensions and dissolved molecules in synthesized Janus suspensions are reminiscent of such chemical molecules. Communication between swimmers through the gradients of such chemicals is the foundation of this stabilization mechanism. To classify the stable states of such active systems, we investigate the detailed phase diagrams for two classes of systems with momentum conserving and non-conserving dynamics. Our linear stability analysis shows that the proposed stabilization mechanism can work for swimmers with different dynamical properties, e.g., pushers or pullers and with various static characteristics, e.g., spherical, oblate or prolate geometries.

SELECTION OF CITATIONS
SEARCH DETAIL
...