Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Complexity ; 20(3): 22-38, 2015.
Article in English | MEDLINE | ID: mdl-25755620

ABSTRACT

Why do mouse corneal epithelial cells display spiraling patterns? We want to provide an explanation for this phenomenon by applying an idealized problem solving process. Specifically, we applied complementary line-fitting methods to measure transgenic epithelial reporter expression arrangements displayed on three mature, live enucleated globes to clarify the problem. Two prominent logarithmic curves were discovered, one of which displayed the ϕ ratio, an indicator of the optimal configuration in phyllotactic systems. We then utilized two different computational approaches to expose our current understanding of the behavior. In one procedure, which involved an isotropic mechanics-based finite element method, we successfully produced logarithmic spiral curves of maximum shear strain based pathlines but computed dimensions displayed pitch angles of 35° (ϕ spiral is ~17°), which was altered when we fitted the model with published measurements of coarse collagen orientations. We then used model-based reasoning in context of Peircean abduction to select a working hypothesis. Our work serves as a concise example of applying a scientific habit of mind and illustrates nuances of executing a common method to doing integrative science.

2.
Arq Bras Oftalmol ; 77(1): 60-5, 2014.
Article in English | MEDLINE | ID: mdl-25076377

ABSTRACT

The cornea is a transparent tissue in front of the eye that refracts light and facilitates vision. A slight change in the geometry of the cornea remarkably affects the optical power. Because of this sensitivity, biomechanical study of the cornea can reveal much about its performance and function. In vivo and in vitro studies have been conducted to investigate the mechanics of the cornea and determine its characteristics. Numerical techniques such as the finite element method (FEM) have been extensively implemented as effective and noninvasive methods for analyzing corneal mechanics and possible disorders. This article reviews the use of FEM for assessing the mechanical behavior of the cornea. Different applications of FEM in corneal disease studies, surgical predictions, impact simulations, and clinical applications have been reviewed. Some suggestions for the future of this type of modeling in the area of corneal mechanics are also discussed.


Subject(s)
Cornea/physiology , Corneal Topography , Finite Element Analysis , Cornea/anatomy & histology , Humans , Surface Properties
3.
Arq. bras. oftalmol ; 77(1): 60-65, Jan-Feb/2014. graf
Article in English | LILACS | ID: lil-715559

ABSTRACT

The cornea is a transparent tissue in front of the eye that refracts light and facilitates vision. A slight change in the geometry of the cornea remarkably affects the optical power. Because of this sensitivity, biomechanical study of the cornea can reveal much about its performance and function. In vivo and in vitro studies have been conducted to investigate the mechanics of the cornea and determine its characteristics. Numerical techniques such as the finite element method (FEM) have been extensively implemented as effective and noninvasive methods for analyzing corneal mechanics and possible disorders. This article reviews the use of FEM for assessing the mechanical behavior of the cornea. Different applications of FEM in corneal disease studies, surgical predictions, impact simulations, and clinical applications have been reviewed. Some suggestions for the future of this type of modeling in the area of corneal mechanics are also discussed.


A córnea é um tecido transparente na parte frontal do olho, que refrata a luz e torna a visão possível. Uma ligeira alteração na geometria da córnea notavelmente afeta a sua potência óptica. Devido a essa sensibilidade, o estudo biomecânico da córnea pode revelar muito sobre o seu desempenho e funcionalidade. Estudos in vivo e in vitro foram realizados para investigar a mecânica da córnea e para determinar suas características. Técnicas numéricas como o método dos elementos finitos (FEM) foram amplamente implementadas como métodos eficazes e não invasivos de análise mecânica da córnea e seus possíveis transtornos. Este artigo analisa o uso de FEM para avaliar o comportamento mecânico da córnea. Diferentes aplicações da FEM no estudo de doenças da córnea, previsões cirúrgicas, simulações de impacto e aplicações clínicas foram revistos. São discutidas algumas sugestões para o futuro deste tipo de modelagem na área de mecânica de córnea.


Subject(s)
Humans , Corneal Topography , Cornea/physiology , Finite Element Analysis , Cornea/anatomy & histology , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...