Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Front Artif Intell ; 5: 826207, 2022.
Article in English | MEDLINE | ID: mdl-35514953

ABSTRACT

Stereotypes are encountered every day, in interpersonal communication as well as in entertainment, news stories, and on social media. In this study, we present a computational method to mine large, naturally occurring datasets of text for sentences that express perceptions of a social group of interest, and then map these sentences to the two-dimensional plane of perceived warmth and competence for comparison and interpretation. This framework is grounded in established social psychological theory, and validated against both expert annotation and crowd-sourced stereotype data. Additionally, we present two case studies of how the model might be used to answer questions using data "in-the-wild," by collecting Twitter data about women and older adults. Using the data about women, we are able to observe how sub-categories of women (e.g., Black women and white women) are described similarly and differently from each other, and from the superordinate group of women in general. Using the data about older adults, we show evidence that the terms people use to label a group (e.g., old people vs. senior citizens) are associated with different stereotype content. We propose that this model can be used by other researchers to explore questions of how stereotypes are expressed in various large text corpora.

2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2016: 5246-5249, 2016 Aug.
Article in English | MEDLINE | ID: mdl-28269447

ABSTRACT

An exploratory analysis is carried out to investigate the feasibility of using BioImpedance Spectroscopy (BIS) parameters, measured on scalp, as real-time feedback during Transcranial Direct Current Stimulation (tDCS). TDCS is shown to be a potential treatment for neurological disorders. However, this technique is not considered as a reliable clinical treatment, due to the lack of a measurable indicator of treatment efficacy. Although the voltage that is applied on the head is very simple to measure during a tDCS session, changes of voltage are difficult to interpret in terms of variables that affect clinical outcome. BIS parameters are considered as potential feedback parameters, because: 1) they are shown to be associated with the DC voltage applied on the head, 2) they are interpretable in terms of conductive and capacitive properties of head tissues, 3) physical interpretation of BIS measurements makes them prone to be adjusted by clinically controllable variables, 4) BIS parameters are measurable in a cost-effective and safe way and do not interfere with DC stimulation. This research indicates that a quadratic regression model can predict the DC voltage between anode and cathode based on parameters extracted from BIS measurements. These parameters are extracted by fitting the measured BIS spectra to an equivalent electrical circuit model. The effect of clinical tDCS variables on BIS parameters needs to be investigated in future works. This work suggests that BIS is a potential method to be used for monitoring a tDCS session in order to adjust, tailor, or personalize tDCS treatment protocols.


Subject(s)
Dielectric Spectroscopy , Feedback , Transcranial Direct Current Stimulation , Electric Conductivity , Electrodes , Head , Humans , Regression, Psychology
3.
Comput Biol Med ; 63: 42-51, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26004827

ABSTRACT

Due to safety and low cost of bioimpedance spectroscopy (BIS), classification of BIS can be potentially a preferred way of detecting changes in living tissues. However, for longitudinal datasets linear classifiers fail to classify conventional Cole parameters extracted from BIS measurements because of their high variability. In some applications, linear classification based on Principal Component Analysis (PCA) has shown more accurate results. Yet, these methods have not been established for BIS classification, since PCA features have neither been investigated in combination with other classifiers nor have been compared to conventional Cole features in benchmark classification tasks. In this work, PCA and Cole features are compared in three synthesized benchmark classification tasks which are expected to be detected by BIS. These three tasks are classification of before and after geometry change, relative composition change and blood perfusion in a cylindrical organ. Our results show that in all tasks the features extracted by PCA are more discriminant than Cole parameters. Moreover, a pilot study was done on a longitudinal arm BIS dataset including eight subjects and three arm positions. The goal of the study was to compare different methods in arm position classification which includes all three synthesized changes mentioned above. Our comparative study on various classification methods shows that the best classification accuracy is obtained when PCA features are classified by a K-Nearest Neighbors (KNN) classifier. The results of this work suggest that PCA+KNN is a promising method to be considered for classification of BIS datasets that deal with subject and time variability.


Subject(s)
Dielectric Spectroscopy/methods , Models, Biological , Animals , Humans
4.
Physiol Meas ; 36(5): 983-99, 2015 May.
Article in English | MEDLINE | ID: mdl-25893319

ABSTRACT

In several applications of bioimpedance spectroscopy, the measured spectrum is parameterized by being fitted into the Cole equation. However, the extracted Cole parameters seem to be inconsistent from one measurement session to another, which leads to a high standard deviation of extracted parameters. This inconsistency is modeled with a source of random variations added to the voltage measurement carried out in the time domain. These random variations may originate from biological variations that are irrelevant to the evidence that we are investigating. Yet, they affect the voltage measured by using a bioimpedance device based on which magnitude and phase of impedance are calculated.By means of simulated data, we showed that Cole parameters are highly affected by this type of variation. We further showed that singular value decomposition (SVD) is an effective tool for parameterizing bioimpedance measurements, which results in more consistent parameters than Cole parameters. We propose to apply SVD as a preprocessing method to reconstruct denoised bioimpedance measurements. In order to evaluate the method, we calculated the relative difference between parameters extracted from noisy and clean simulated bioimpedance spectra. Both mean and standard deviation of this relative difference are shown to effectively decrease when Cole parameters are extracted from preprocessed data in comparison to being extracted from raw measurements.We evaluated the performance of the proposed method in distinguishing three arm positions, for a set of experiments including eight subjects. It is shown that Cole parameters of different positions are not distinguishable when extracted from raw measurements. However, one arm position can be distinguished based on SVD scores. Moreover, all three positions are shown to be distinguished by two parameters, R0/R∞ and Fc, when Cole parameters are extracted from preprocessed measurements. These results suggest that SVD could be considered as an effective technique for overcoming the variability of bio-impedance spectroscopy measurements.


Subject(s)
Dielectric Spectroscopy , Signal-To-Noise Ratio , Statistics as Topic/methods , Arm , Humans
5.
Annu Int Conf IEEE Eng Med Biol Soc ; 2015: 3448-51, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26737034

ABSTRACT

Tissue resistance changes upon application of DC current. We posit that in a similar fashion, that scalp and skull resistances during trancranial direct current stimulation (tDCS) are variable, resulting in changes to intracranial dose. Transcranial magnetic stimulation (TMS), electoencephelogram (EEG), functional magnetic resonance imaging (fMRI), proton magnetic resonance spectroscopy ((1)H MRS) and functional near infrared spectroscopy (fNIRS) are technologies used to measure individual neural response to tDCS. These technologies are complex and may not be directly correlated to intracranial dose. We therefore present a bioimpedance spectroscopy method of measuring changes to the intracranial dose in vivo. Scalp resistance changes are measured during tDCS. Current flow through the scalp is calculated as the ratio of voltage measured on the scalp and scalp resistance. Variation of intracranial current is indirectly calculated from changes in the current shunted through the scalp. We thus demonstrate a novel methodology of on-line monitoring of scalp resistance and current as an objective feedback of estimated individual tDCS dose.


Subject(s)
Dielectric Spectroscopy/methods , Transcranial Direct Current Stimulation/methods , Brain/physiology , Electroencephalography/instrumentation , Electroencephalography/methods , Humans , Models, Biological , Scalp/physiology
6.
Comput Biol Med ; 41(6): 411-9, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21536263

ABSTRACT

Many methods for automatic heartbeat classification have been applied and reported in literature, but relatively few of them concerned with patient independent classification because of the less significant results compared to patient dependent ones. In this work, using phase space reconstruction in order to classify five heartbeat types can fill this gap to some extent. In the first and second method, Reconstructed phase space (RPS) is modeled by the Gaussian mixture model (GMM) and bins, respectively, and then classified by classic Bayesian classifier. In the third method, RPS is directly used to train predictor time-delayed neural networks (TDNN) and classified based on minimum prediction error. All three methods highly outperform the results reported before, for patient independent heartbeat classification. The best result is achieved using GMM-Bayes method with 92.5% classification accuracy.


Subject(s)
Electrocardiography/methods , Heart Rate/physiology , Signal Processing, Computer-Assisted , Arrhythmias, Cardiac , Bayes Theorem , Databases, Factual , Fuzzy Logic , Humans , Neural Networks, Computer , Normal Distribution , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...