Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Opt Express ; 21(17): 19982-9, 2013 Aug 26.
Article in English | MEDLINE | ID: mdl-24105544

ABSTRACT

Long-term stable, sub-femtosecond timing distribution over a 1.2-km polarization-maintaining (PM) fiber-optic link using balanced optical cross-correlators for link stabilization is demonstrated. Novel dispersion-compensating PM fiber was developed to construct a dispersion-slope-compensated PM link, which eliminated slow timing drifts and jumps previously induced by polarization mode dispersion in standard single-mode fiber. Numerical simulations of nonlinear pulse propagation in the fiber link confirmed potential sub-100-as timing stability for pulse energies below 70 pJ. Link operation for 16 days showed ~0.6 fs RMS timing drift and during a 3-day interval only ~0.13 fs drift, which corresponds to a stability level of 10(-21).

2.
Opt Express ; 20(4): 4085-101, 2012 Feb 13.
Article in English | MEDLINE | ID: mdl-22418167

ABSTRACT

Results of a self-consistent ultrafast study of nonlinear optical properties of silicon nanowaveguides using heterodyne pump-probe technique are reported. The two-photon absorption coefficient and free-carrier absorption effective cross-section were determined to be 0.68cm/GW, and 1.9x10(-17) cm2, respectively and the Kerr coefficient and free-carrier-induced refractive index change 0.32x10(-13) cm2/W, and -5.5x10(-21) cm3, respectively. The effects of the proton bombardment on the linear loss and the carrier lifetime of the devices were also studied. Carrier lifetime reduction from 330ps to 33ps with a linear loss of only 14.8dB/cm was achieved using a proton bombardment level of 10(15)/cm2.

3.
Opt Express ; 20(4): 4454-69, 2012 Feb 13.
Article in English | MEDLINE | ID: mdl-22418205

ABSTRACT

Accurate conversion of wideband multi-GHz analog signals into the digital domain has long been a target of analog-to-digital converter (ADC) developers, driven by applications in radar systems, software radio, medical imaging, and communication systems. Aperture jitter has been a major bottleneck on the way towards higher speeds and better accuracy. Photonic ADCs, which perform sampling using ultra-stable optical pulse trains generated by mode-locked lasers, have been investigated for many years as a promising approach to overcome the jitter problem and bring ADC performance to new levels. This work demonstrates that the photonic approach can deliver on its promise by digitizing a 41 GHz signal with 7.0 effective bits using a photonic ADC built from discrete components. This accuracy corresponds to a timing jitter of 15 fs - a 4-5 times improvement over the performance of the best electronic ADCs which exist today. On the way towards an integrated photonic ADC, a silicon photonic chip with core photonic components was fabricated and used to digitize a 10 GHz signal with 3.5 effective bits. In these experiments, two wavelength channels were implemented, providing the overall sampling rate of 2.1 GSa/s. To show that photonic ADCs with larger channel counts are possible, a dual 20-channel silicon filter bank has been demonstrated.

4.
Opt Lett ; 35(20): 3522-4, 2010 Oct 15.
Article in English | MEDLINE | ID: mdl-20967120

ABSTRACT

We characterize the timing jitter of passively mode-locked, femtosecond, erbium fiber lasers with unprecedented resolution, enabling the observation of quantum-origin timing jitter up to the Nyquist frequency. For a pair of nearly identical 79.4MHz dispersion-managed lasers with an output pulse energy of 450pJ, the high-frequency jitter was found to be 2.6fs [10kHz, 39.7MHz]. The results agree well with theoretical noise models over more than three decades, extending to the Nyquist frequency. It is also found that unexpected noise may occur if care is not taken in optimizing the mode-locked state.

5.
Opt Lett ; 34(16): 2522-4, 2009 Aug 15.
Article in English | MEDLINE | ID: mdl-19684836

ABSTRACT

For the first time to our knowledge, continuous nonsegmented channel waveguides in periodically poled KTiOPO(4) with guided orthogonal polarizations are used to demonstrate type II background-free second harmonic generation in the telecom band with 1.6%/(W cm(2)) normalized conversion efficiency. This constitutes a 90-fold improvement in aggregate conversion efficiency over its free space counterpart. Simulations show that the guided wave device should enable the measurement of timing fluctuations of optical pulse trains at the attosecond level in an optical cross correlation scheme.

6.
Opt Express ; 16(18): 13979-89, 2008 Sep 01.
Article in English | MEDLINE | ID: mdl-18773009

ABSTRACT

We report on the confocal Raman characterization of the micro-structural lattice changes induced during the high-repetition rate ultrafast laser writing of buried optical waveguides in lithium niobate (LiNbO(3)) crystals. While the laser beam focal volume is characterized by a significant lattice expansion together with a high defect concentration, the adjacent waveguide zone is largely free of defects, undergoing only slight rearrangement of the oxygen octahedron in the LiNbO(3) lattice. The close proximity of these two zones has been found responsible for the propagation losses of the guided light. Subjacent laser-induced periodic micro-structures have been also observed inside the laser focal volume, and identified with a strong periodic distribution of lattice defects.


Subject(s)
Microscopy, Confocal/instrumentation , Niobium/chemistry , Optics and Photonics/instrumentation , Oxides/chemistry , Refractometry/instrumentation , Spectrum Analysis, Raman/instrumentation , Equipment Design , Equipment Failure Analysis , Niobium/radiation effects , Oxides/radiation effects , Surface Properties
7.
Opt Lett ; 32(24): 3474-6, 2007 Dec 15.
Article in English | MEDLINE | ID: mdl-18087513

ABSTRACT

Ultrashort pulse laser interaction with silica-silicon interfaces is presented as a means for all-solid-phase formation of high-purity silicon nanoparticles in the absence of ablation plumes or any substrate intermixing with surfaces in ambient air. Transmission electron microscopy and Raman spectroscopy provide definitive evidence for creation of nanocrystals in the silica host, while compressive stress in the silicon substrate corroborates the formation of optical waveguides parallel to the tracks.

8.
Opt Express ; 15(7): 4182-91, 2007 Apr 02.
Article in English | MEDLINE | ID: mdl-19532662

ABSTRACT

A one-step type II photosensitivity process has been optimized for inscribing strong >30-dB first-order Bragg-gratings during laser formation of buried waveguides in borosilicate glass. Mode profiles, propagation losses, waveguide birefringence and transmission and reflection spectra were systematically studied in the 1550-nm telecom band over a wide range of laser exposure conditions. Low-loss and birefringence-free waveguides are reported for a narrow laser processing window of 1.0 +/- 0.2 ps pulse duration, yielding highly stable Bragg resonances to temperatures up to 500 degrees C.

9.
Opt Express ; 15(17): 10842-54, 2007 Aug 20.
Article in English | MEDLINE | ID: mdl-19547441

ABSTRACT

For the first time to our knowledge, bulk modification of lithium niobate using high repetition rate ultrashort laser pulses has been studied. A fiber based ultrafast laser has been applied in a range of 0.1 to 1.5 MHz repetition rate to directly inscribe optical waveguides in z-cut lithium niobate. Circularly polarized light with stretched 600 fs pulses produced waveguides with nearly circular mode profiles that guided in the telecom band of 1300 nm. Higher laser repetition rate of 700 kHz was found to offer smooth waveguides with low propagation loss of 0.6 dB/cm, matching the best reported value so far, with the advantage of 50 fold faster writing speed. At repetition rates of 250 kHz and higher, the tracks exhibited a cladding-like modification zone that extended outside the main laser interaction volume, yielding smoother structures, despite higher net fluence delivery, providing concrete evidence of heat accumulation and thermal annealing effects. We also present the first observation of periodic micro-structures in the bulk laser interaction volume of a non-glass material.

10.
Opt Lett ; 31(20): 2987-9, 2006 Oct 15.
Article in English | MEDLINE | ID: mdl-17001375

ABSTRACT

For the first time to our knowledge, ultrafast laser writing has generated room-temperature stable guided-wave optics in bulk lithium niobate for the telecommunication spectrum. Among a seven-dimensional parameter space for waveguide optimization, two frequently overlooked parameters, pulse duration and polarization, were found to be key in overcoming undesired nonlinear optical responses imposed by this material. Single-mode waveguides were best formed with circularly polarized light having a relatively long pulse duration of approximately 1.0 ps. The waveguides were highly polarization dependent and guided in both telecommunication bands near 1300 and 1550 nm, exhibiting losses as low as 0.7 dB/cm.

11.
Opt Lett ; 30(9): 964-6, 2005 May 01.
Article in English | MEDLINE | ID: mdl-15906971

ABSTRACT

For the first time to the authors' knowledge, optical waveguides have been inscribed in bulk crystalline silicon by ultrafast laser radiation. Femtosecond laser pulses of 40-nm spectral bandwidth, 1-kHz repetition rate, and 1.7-microJ on-target energy were applied at a mid-infrared wavelength of 2.4 microm to induce nonlinear absorption in the focal volume of the beam. By scanning the laser beam with respect to the sample, buried optical waveguides have been created that were single mode at 1550 and 1320 nm and guided light only with its polarization perpendicular to the sample's surface. Propagation losses with an upper limit of 1.2 dB/cm or less were observed throughout the optical telecommunications band.

SELECTION OF CITATIONS
SEARCH DETAIL
...