Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters










Publication year range
1.
Semin Liver Dis ; 2024 May 17.
Article in English | MEDLINE | ID: mdl-38772406

ABSTRACT

Hepatic porphyrias are a group of metabolic disorders that are characterized by overproduction and accumulation of porphyrin precursors in the liver. These porphyrins cause neurologic symptoms as well as cutaneous photosensitivity, and in some cases patients can experience life-threatening acute neurovisceral attacks. This review describes the acute hepatic porphyrias in detail, including acute intermittent porphyria, hereditary coproporphyria, and variegate porphyria, as well as the hepatic porphyrias with cutaneous manifestations such as porphyria cutanea tarda and hepatoerythropoietic porphyria. Each section will cover disease prevalence, clinical manifestations, and current therapies, including strategies to manage symptoms. Finally, we review new and emerging treatment modalities, including gene therapy through use of adeno-associated vectors and chaperone therapies such as lipid nanoparticle and small interfering RNA-based therapeutics.

2.
Semin Liver Dis ; 43(4): 446-459, 2023 11.
Article in English | MEDLINE | ID: mdl-37973028

ABSTRACT

The porphyrias are a group of metabolic disorders that are caused by defects in heme biosynthesis pathway enzymes. The result is accumulation of heme precursors, which can cause neurovisceral and/or cutaneous photosensitivity. Liver is commonly either a source or target of excess porphyrins, and porphyria-associated hepatic dysfunction ranges from minor abnormalities to liver failure. In this review, the first of a three-part series, we describe the defects commonly found in each of the eight enzymes involved in heme biosynthesis. We also discuss the pathophysiology of the hepatic porphyrias in detail, covering epidemiology, histopathology, diagnosis, and complications. Cellular consequences of porphyrin accumulation are discussed, with an emphasis on oxidative stress, protein aggregation, hepatocellular cancer, and endothelial dysfunction. Finally, we review current therapies to treat and manage symptoms of hepatic porphyria.


Subject(s)
Liver Neoplasms , Porphyrias, Hepatic , Porphyrias , Porphyrins , Humans , Rare Diseases/complications , Porphyrins/metabolism , Porphyrias/diagnosis , Porphyrias/therapy , Porphyrias/complications , Porphyrias, Hepatic/epidemiology , Porphyrias, Hepatic/therapy , Porphyrias, Hepatic/complications , Heme/metabolism , Liver Neoplasms/metabolism
3.
Sci Transl Med ; 15(715): eade3157, 2023 09 27.
Article in English | MEDLINE | ID: mdl-37756381

ABSTRACT

Obesity is increasing worldwide and leads to a multitude of metabolic diseases, including cardiovascular disease, type 2 diabetes, nonalcoholic fatty liver disease, and nonalcoholic steatohepatitis (NASH). Cysteine-rich angiogenic inducer 61 (CYR61) is associated with the progression of NASH, but it has been described to have anti- and proinflammatory properties. We sought to examine the role of liver CYR61 in NASH progression. CYR61 liver-specific knockout mice on a NASH diet showed improved glucose tolerance, decreased liver inflammation, and reduced fibrosis. CYR61 polarized infiltrating monocytes promoting a proinflammatory/profibrotic phenotype through an IRAK4/SYK/NF-κB signaling cascade. In vitro, CYR61 activated a profibrotic program, including PDGFa/PDGFb expression in macrophages, in an IRAK4/SYK/NF-κB-dependent manner. Furthermore, targeted-antibody blockade reduced CYR61-driven signaling in macrophages in vitro and in vivo, reducing fibrotic development. This study demonstrates that CYR61 is a key driver of liver inflammation and fibrosis in NASH.


Subject(s)
Diabetes Mellitus, Type 2 , Non-alcoholic Fatty Liver Disease , Mice , Animals , Non-alcoholic Fatty Liver Disease/pathology , Interleukin-1 Receptor-Associated Kinases/metabolism , NF-kappa B/metabolism , Diabetes Mellitus, Type 2/metabolism , Disease Models, Animal , Liver/metabolism , Hepatocytes/metabolism , Fibrosis , Macrophages/metabolism , Mice, Knockout , Mice, Inbred C57BL
4.
Cell Mol Gastroenterol Hepatol ; 16(6): 895-921, 2023.
Article in English | MEDLINE | ID: mdl-37579970

ABSTRACT

BACKGROUND & AIMS: ß-Catenin, the effector molecule of the Wnt signaling pathway, has been shown to play a crucial role in bile acid homeostasis through direct inhibition of farnesoid X receptor (FXR), which has pleiotropic effects on bile acid homeostasis. We hypothesize that simultaneous suppression of ß-catenin signaling and activation of FXR in a mouse model of cholestasis will reduce injury and biliary fibrosis through inhibition of bile acid synthesis. METHODS: To induce cholestasis, we performed bile duct ligation (BDL) on wild-type male mice. Eight hours after surgery, mice received FXR agonists obeticholic acid, tropifexor, or GW-4064 or Wnt inhibitor Wnt-C59. Severity of cholestatic liver disease and expression of target genes were evaluated after either 5 days or 12 days of treatment. RESULTS: We found that although the FXR agonists worsened BDL-induced injury and necrosis after 5 days, Wnt-C59 did not. After 12 days of BDL, Wnt-C59 treatment, but not GW-4064 treatment, reduced both the number of infarcts and the number of inflammatory cells in liver. RNA sequencing analysis of whole livers revealed a notable suppression of nuclear factor kappa B signaling when Wnt signaling is inhibited. We then analyzed transcriptomic data to identify a cholangiocyte-specific signature in our model and demonstrated that Wnt-C59-treated livers were enriched for genes expressed in quiescent cholangiocytes, whereas genes expressed in activated cholangiocytes were enriched in BDL alone. A similar decrease in biliary injury and inflammation occurred in Mdr2 KO mice treated with Wnt-C59. CONCLUSIONS: Inhibiting Wnt signaling suppresses cholangiocyte activation and disrupts the nuclear factor kappa B-dependent inflammatory axis, reducing cholestatic-induced injury.


Subject(s)
Cholestasis , Wnt Signaling Pathway , Male , Animals , Mice , beta Catenin , NF-kappa B , Bile Acids and Salts
5.
Hepatol Commun ; 7(9)2023 09 01.
Article in English | MEDLINE | ID: mdl-37556373

ABSTRACT

BACKGROUND: We previously showed that loss of yes-associated protein 1 (YAP) in early liver development (YAPKO) leads to an Alagille syndrome-like phenotype, with failure of intrahepatic bile duct development, severe cholestasis, and chronic hepatocyte adaptations to reduce liver injury. TAZ, a paralog of YAP, was significantly upregulated in YAPKO hepatocytes and interacted with TEA domain family member (TEAD) transcription factors, suggesting possible compensatory activity. METHODS: We deleted both Yap1 and Wwtr1 (which encodes TAZ) during early liver development using the Foxa3 promoter to drive Cre expression, similar to YAPKO mice, resulting in YAP/TAZ double knockout (DKO) and YAPKO with TAZ heterozygosity (YAPKO TAZHET). We evaluated these mice using immunohistochemistry, serum biochemistry, bile acid profiling, and RNA sequencing. RESULTS: DKO mice were embryonic lethal, but their livers were similar to YAPKO, suggesting an extrahepatic cause of death. Male YAPKO TAZHET mice were also embryonic lethal, with insufficient samples to determine the cause. However, YAPKO TAZHET females survived and were phenotypically similar to YAPKO mice, with increased bile acid hydrophilicity and similar global gene expression adaptations but worsened the hepatocellular injury. TAZ heterozygosity in YAPKO impacted the expression of canonical YAP targets Ctgf and Cyr61, and we found changes in pathways regulating cell division and inflammatory signaling correlating with an increase in hepatocyte cell death, cell cycling, and macrophage recruitment. CONCLUSIONS: YAP loss (with or without TAZ loss) aborts biliary development. YAP and TAZ play a codependent critical role in foregut endoderm development outside the liver, but they are not essential for hepatocyte development. TAZ heterozygosity in YAPKO livers increased cell cycling and inflammatory signaling in the setting of chronic injury, highlighting genes that are especially sensitive to TAZ regulation.


Subject(s)
Adaptor Proteins, Signal Transducing , Carcinoma, Hepatocellular , Cholestasis , Liver Neoplasms , YAP-Signaling Proteins , Animals , Male , Mice , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Endoderm/metabolism , Intracellular Signaling Peptides and Proteins , Trans-Activators/metabolism , Transcription Factors/genetics , YAP-Signaling Proteins/genetics , Female
6.
Hepatology ; 78(6): 1907-1921, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37246413

ABSTRACT

Wnt-ß-catenin signaling has emerged as an important regulatory pathway in the liver, playing key roles in zonation and mediating contextual hepatobiliary repair after injuries. In this review, we will address the major advances in understanding the role of Wnt signaling in hepatic zonation, regeneration, and cholestasis-induced injury. We will also touch on some important unanswered questions and discuss the relevance of modulating the pathway to provide therapies for complex liver pathologies that remain a continued unmet clinical need.


Subject(s)
Liver , beta Catenin , beta Catenin/metabolism , Liver/pathology , Wnt Signaling Pathway , Liver Regeneration , Homeostasis
7.
PLoS One ; 18(2): e0282358, 2023.
Article in English | MEDLINE | ID: mdl-36821556

ABSTRACT

[This corrects the article DOI: 10.1371/journal.pone.0059836.].

9.
Gastroenterology ; 163(2): 449-465, 2022 08.
Article in English | MEDLINE | ID: mdl-35550144

ABSTRACT

BACKGROUND & AIMS: Intrahepatic cholangiocarcinoma (ICC) is a devastating liver cancer with extremely high intra- and inter-tumoral molecular heterogeneity, partly due to its diverse cellular origins. We investigated clinical relevance and the molecular mechanisms underlying hepatocyte (HC)-driven ICC development. METHODS: Expression of ICC driver genes in human diseased livers at risk for ICC development were examined. The sleeping beauty and hydrodynamic tail vein injection based Akt-NICD/YAP1 ICC model was used to investigate pathogenetic roles of SRY-box transcription factor 9 (SOX9) and yes-associated protein 1 (YAP1) in HC-driven ICC. We identified DNA methyltransferase 1 (DNMT1) as a YAP1 target, which was validated by loss- and gain-of-function studies, and its mechanism addressed by chromatin immunoprecipitation sequencing. RESULTS: Co-expression of AKT and Notch intracellular domain (NICD)/YAP1 in HC yielded ICC that represents 13% to 29% of clinical ICC. NICD independently regulates SOX9 and YAP1 and deletion of either, significantly delays ICC development. Yap1 or TEAD inhibition, but not Sox9 deletion, impairs HC-to-biliary epithelial cell (BEC) reprogramming. DNMT1 was discovered as a novel downstream effector of YAP1-TEAD complex that directs HC-to-BEC/ICC fate switch through the repression of HC-specific genes regulated by master regulators for HC differentiation, including hepatocyte nuclear factor 4 alpha, hepatocyte nuclear factor 1 alpha, and CCAAT/enhancer-binding protein alpha/beta. DNMT1 loss prevented NOTCH/YAP1-dependent HC-driven cholangiocarcinogenesis, and DNMT1 re-expression restored ICC development following TEAD repression. Co-expression of DNMT1 with AKT was sufficient to induce tumor development including ICC. DNMT1 was detected in a subset of HCs and dysplastic BECs in cholestatic human livers prone to ICC development. CONCLUSION: We identified a novel NOTCH-YAP1/TEAD-DNMT1 axis essential for HC-to-BEC/ICC conversion, which may be relevant in cholestasis-to-ICC pathogenesis in the clinic.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Cholestasis , Bile Duct Neoplasms/pathology , Bile Ducts, Intrahepatic/pathology , Cholangiocarcinoma/pathology , Cholestasis/pathology , Hepatocytes/metabolism , Humans , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/genetics , YAP-Signaling Proteins
10.
FASEB J ; 36(2): e22157, 2022 02.
Article in English | MEDLINE | ID: mdl-35032404

ABSTRACT

Congenital hepatic fibrosis (CHF) is a developmental liver disease that is caused by mutations in genes that encode ciliary proteins and is characterized by bile duct dysplasia and portal fibrosis. Recent work has demonstrated that mutations in ANKS6 can cause CHF due to its role in bile duct development. Here, we report a novel ANKS6 mutation, which was identified in an infant presenting with neonatal jaundice due to underlying biliary abnormalities and liver fibrosis. Molecular analysis revealed that ANKS6 liver pathology is associated with the infiltration of inflammatory macrophages to the periportal fibrotic tissue and ductal epithelium. To further investigate the role of macrophages in CHF pathophysiology, we generated a novel liver-specific Anks6 knockout mouse model. The mutant mice develop biliary abnormalities and rapidly progressing periportal fibrosis reminiscent of human CHF. The development of portal fibrosis in Anks6 KO mice coincided with the accumulation of inflammatory monocytes and macrophages in the mutant liver. Gene expression and flow cytometric analysis demonstrated the preponderance of M1- over M2-like macrophages at the onset of fibrosis. A critical role for macrophages in promoting peribiliary fibrosis was demonstrated by depleting the macrophages with clodronate liposomes which effectively reduced inflammatory gene expression and fibrosis, and ameliorated tissue histology and biliary function in Anks6 KO livers. Together, this study demonstrates that macrophages play an important role in the initiation of liver fibrosis in ANKS6-deficient livers and their therapeutic elimination may provide an avenue to mitigate CHF in patients.


Subject(s)
Carrier Proteins/metabolism , Cholestasis/pathology , Liver Cirrhosis/metabolism , Liver/metabolism , Macrophages/metabolism , Animals , Disease Models, Animal , Gene Expression/physiology , Inflammation/metabolism , Inflammation/pathology , Liver/pathology , Liver Cirrhosis/pathology , Macrophages/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Monocytes/metabolism , Monocytes/pathology
11.
Semin Liver Dis ; 42(1): 17-33, 2022 02.
Article in English | MEDLINE | ID: mdl-35073587

ABSTRACT

Yes-associated protein 1 (YAP1) is a transcriptional coactivator that activates transcriptional enhanced associate domain transcription factors upon inactivation of the Hippo signaling pathway, to regulate biological processes like proliferation, survival, and differentiation. YAP1 is most prominently expressed in biliary epithelial cells (BECs) in normal adult livers and during development. In the current review, we will discuss the multiple roles of YAP1 in the development and morphogenesis of bile ducts inside and outside the liver, as well as in orchestrating the cholangiocyte repair response to biliary injury. We will review how biliary repair can occur through the process of hepatocyte-to-BEC transdifferentiation and how YAP1 is pertinent to this process. We will also discuss the liver's capacity for metabolic reprogramming as an adaptive mechanism in extreme cholestasis, such as when intrahepatic bile ducts are absent due to YAP1 loss from hepatic progenitors. Finally, we will discuss the roles of YAP1 in the context of pediatric pathologies afflicting bile ducts, such as Alagille syndrome and biliary atresia. In conclusion, we will comprehensively discuss the spatiotemporal roles of YAP1 in biliary development and repair after biliary injury while describing key interactions with other well-known developmental pathways.


Subject(s)
Biliary Tract , Biological Phenomena , Bile Ducts, Intrahepatic/metabolism , Bile Ducts, Intrahepatic/pathology , Child , Humans , Liver/metabolism , Transcription Factors/metabolism , YAP-Signaling Proteins
12.
Sci Rep ; 12(1): 206, 2022 01 07.
Article in English | MEDLINE | ID: mdl-34997170

ABSTRACT

Primary sclerosing cholangitis (PSC) is a rare, chronic, cholestatic liver disease characterized by progressive inflammation and fibrosis of the bile ducts. We have previously demonstrated the importance of Wnt/ß-catenin signaling in mouse models of PSC. In this study, we wished to determine the clinical relevance of ß-catenin localization in patient samples. In livers explanted from patients diagnosed with PSC, the majority (12/16; 75%) lacked ß-catenin protein expression. Biopsies from patients post-transplant were classified as recurrent or non-recurrent based on pathology reports and then scored for ß-catenin activation as a function of immunohistochemical localization. Despite lack of statistical significance, patients with recurrent primary disease (n = 11) had a greater percentage of samples with nuclear, transcriptionally active ß-catenin (average 58.8%) than those with no recurrence (n = 10; 40.53%), while non-recurrence is correlated with ß-catenin staining at the cell surface (average 52.63% for non-recurrent vs. 27.34% for recurrent), as determined by three different methods of analysis. ß-catenin score and years-to-endpoint are both strongly associated with recurrence status (p = 0.017 and p = 0.00063, respectively). Finally, there was significant association between higher ß-catenin score and increased alkaline phosphatase, a marker of biliary injury and disease progression. Thus, ß-catenin expression and activation changes during the progression of PSC, and its localization may be a useful prognostic tool for predicting recurrence of this disease.


Subject(s)
Cholangitis, Sclerosing/metabolism , Liver/metabolism , beta Catenin/metabolism , Alkaline Phosphatase/metabolism , Bile Acids and Salts/metabolism , Biomarkers/metabolism , Cholangitis, Sclerosing/pathology , Cholangitis, Sclerosing/surgery , Disease Progression , Humans , Liver/pathology , Liver/surgery , Liver Transplantation , Predictive Value of Tests , Recurrence , Retrospective Studies , Time Factors , Treatment Outcome
13.
Am J Pathol ; 192(1): 4-17, 2022 01.
Article in English | MEDLINE | ID: mdl-34924168

ABSTRACT

Metabolic heterogeneity or functional zonation is a key characteristic of the liver that allows different metabolic pathways to be spatially regulated within the hepatic system and together contribute to whole body homeostasis. These metabolic pathways are segregated along the portocentral axis of the liver lobule into three hepatic zones: periportal, intermediate or midzonal, and perivenous. The liver performs complementary or opposing metabolic functions within different hepatic zones while synergistic functions are regulated by overlapping zones, thereby maintaining the overall physiological stability. The Wnt/ß-catenin signaling pathway is well known for its role in liver growth, development, and regeneration. In addition, the Wnt/ß-catenin pathway plays a fundamental and dominant role in hepatic zonation and signals to orchestrate various functions of liver metabolism and pathophysiology. The ß-catenin protein is the central player in the Wnt/ß-catenin signaling cascade, and its activation is crucial for metabolic patterning of the liver. However, dysregulation of Wnt/ß-catenin signaling is also implicated in different liver pathologies, including those associated with metabolic syndrome. ß-Catenin is preferentially localized in the central region of the hepatic lobule surrounding the central vein and regulates multiple functions of this region. This review outlines the role of Wnt/ß-catenin signaling pathway in controlling the different metabolic processes surrounding the central vein and its relation to liver homeostasis and dysfunction.


Subject(s)
Homeostasis , Liver/metabolism , Wnt Signaling Pathway , Animals , Gene Expression Regulation , Heme/biosynthesis , Humans , Wnt Signaling Pathway/genetics , Xenobiotics/metabolism
14.
Elife ; 102021 10 05.
Article in English | MEDLINE | ID: mdl-34609282

ABSTRACT

Expansion of biliary epithelial cells (BECs) during ductular reaction (DR) is observed in liver diseases including cystic fibrosis (CF), and associated with inflammation and fibrosis, albeit without complete understanding of underlying mechanism. Using two different genetic mouse knockouts of ß-catenin, one with ß-catenin loss is hepatocytes and BECs (KO1), and another with loss in only hepatocytes (KO2), we demonstrate disparate long-term repair after an initial injury by 2-week choline-deficient ethionine-supplemented diet. KO2 show gradual liver repopulation with BEC-derived ß-catenin-positive hepatocytes and resolution of injury. KO1 showed persistent loss of ß-catenin, NF-κB activation in BECs, progressive DR and fibrosis, reminiscent of CF histology. We identify interactions of ß-catenin, NFκB, and CF transmembranous conductance regulator (CFTR) in BECs. Loss of CFTR or ß-catenin led to NF-κB activation, DR, and inflammation. Thus, we report a novel ß-catenin-NFκB-CFTR interactome in BECs, and its disruption may contribute to hepatic pathology of CF.


The liver has an incredible capacity to repair itself or 'regenerate' ­ that is, it has the ability to replace damaged tissue with new tissue. In order to do this, the organ relies on hepatocytes (the cells that form the liver) and bile duct cells (the cells that form the biliary ducts) dividing and transforming into each other to repair and replace damaged tissue, in case the insult is dire. During long-lasting or chronic liver injury, bile duct cells undergo a process called 'ductular reaction', which causes the cells to multiply and produce proteins that stimulate inflammation, and can lead to liver scarring (fibrosis). Ductular reaction is a hallmark of severe liver disease, and different diseases exhibit ductular reactions with distinct features. For example, in cystic fibrosis, a unique type of ductular reaction occurs at late stages, accompanied by both inflammation and fibrosis. Despite the role that ductular reaction plays in liver disease, it is not well understood how it works at the molecular level. Hu et al. set out to investigate how a protein called ß-catenin ­ which can cause many types of cells to proliferate ­ is involved in ductular reaction. They used three types of mice for their experiments: wild-type mice, which were not genetically modified; and two strains of genetically modified mice. One of these mutant mice did not produce ß-catenin in biliary duct cells, while the other lacked ß-catenin both in biliary duct cells and in hepatocytes. After a short liver injury ­ which Hu et al. caused by feeding the mice a specific diet ­ the wild-type mice were able to regenerate and repair the liver without exhibiting any ductular reaction. The mutant mice that lacked ß-catenin in hepatocytes showed a temporary ductular reaction, and ultimately repaired their livers by turning bile duct cells into hepatocytes. On the other hand, the mutant mice lacking ß-catenin in both hepatocytes and bile duct cells displayed sustained ductular reactions, inflammation and fibrosis, which looked like that seen in patients with liver disease associated to cystic fibrosis. Further probing showed that ß-catenin interacts with a protein called CTFR, which is involved in cystic fibrosis. When bile duct cells lack either of these proteins, another protein called NF-B gets activated, which causes the ductular reaction, leading to inflammation and fibrosis. The findings of Hu et al. shed light on the role of ß-catenin in ductular reaction. Further, the results show a previously unknown interaction between ß-catenin, CTFR and NF-B, which could lead to better treatments for cystic fibrosis in the future.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Fibrosis/genetics , Inflammation/genetics , NF-kappa B/genetics , beta Catenin/genetics , Animals , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Epithelial Cells/metabolism , Fibrosis/immunology , Inflammation/immunology , Mice , Mice, Transgenic , NF-kappa B/metabolism , beta Catenin/metabolism
15.
Hepatol Commun ; 5(12): 2019-2034, 2021 12.
Article in English | MEDLINE | ID: mdl-34558852

ABSTRACT

We previously identified an up-regulation of specific Wnt proteins in the cholangiocyte compartment during cholestatic liver injury and found that mice lacking Wnt secretion from hepatocytes and cholangiocytes showed fewer proliferating cholangiocytes and high mortality in response to a 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) diet, a murine model of primary sclerosing cholangitis. In vitro studies demonstrated that Wnt7b, one of the Wnts up-regulated during cholestasis, induces proliferation of cholangiocytes in an autocrine manner and increases secretion of proinflammatory cytokines. We hypothesized that loss of Wnt7b may exacerbate some of the complications of cholangiopathies by decreasing the ability of bile ducts to induce repair. Wnt7b-flox mice were bred with Krt19-cre mice to deplete Wnt7b expression in only cholangiocytes (CC) or with albumin-Cre mice to delete Wnt7b expression in both hepatocytes and cholangiocytes (HC + CC). These mice were placed on a DDC diet for 1 month then killed for evaluation. Contrary to our expectations, we found that mice lacking Wnt7b from CC and HC + CC compartments had improved biliary injury, decreased cellular senescence, and lesser bile acid accumulation after DDC exposure compared to controls, along with decreased expression of inflammatory cytokines. Although Wnt7b knockout (KO) resulted in fewer proliferating cholangiocytes, CC and HC + CC KO mice on a DDC diet also had more hepatocytes expressing cholangiocyte markers compared to wild-type mice on a DDC diet, indicating that Wnt7b suppression promotes hepatocyte reprogramming. Conclusion: Wnt7b induces a proproliferative proinflammatory program in cholangiocytes, and its loss is compensated for by conversion of hepatocytes to a biliary phenotype during cholestatic injury.


Subject(s)
Bile Ducts/cytology , Cell Proliferation/genetics , Cholestasis/genetics , Proto-Oncogene Proteins/deficiency , Wnt Proteins/deficiency , Animals , Bile Acids and Salts/metabolism , Cellular Senescence/genetics , Disease Models, Animal , Hepatocytes/metabolism , Mice , Mice, Knockout
16.
Cell Rep ; 36(1): 109310, 2021 07 06.
Article in English | MEDLINE | ID: mdl-34233187

ABSTRACT

Yes-associated protein 1 (YAP1) regulates cell plasticity during liver injury, regeneration, and cancer, but its role in liver development is unknown. We detect YAP1 activity in biliary cells and in cells at the hepatobiliary bifurcation in single-cell RNA sequencing analysis of developing livers. Deletion of Yap1 in hepatoblasts does not impair Notch-driven SOX9+ ductal plate formation but does prevent the formation of the abutting second layer of SOX9+ ductal cells, blocking the formation of a patent intrahepatic biliary tree. Intriguingly, these mice survive for 8 months with severe cholestatic injury and without hepatocyte-to-biliary transdifferentiation. Ductular reaction in the perihilar region suggests extrahepatic biliary proliferation, likely seeking the missing intrahepatic biliary network. Long-term survival of these mice occurs through hepatocyte adaptation via reduced metabolic and synthetic function, including altered bile acid metabolism and transport. Overall, we show YAP1 as a key regulator of bile duct development while highlighting a profound adaptive capability of hepatocytes.


Subject(s)
Adaptation, Physiological , Biliary Tract/physiology , Liver/physiology , Stem Cells/metabolism , YAP-Signaling Proteins/deficiency , Animals , Cell Transdifferentiation , Genotype , Imaging, Three-Dimensional , Liver/embryology , Mice , Mice, Inbred C57BL , Mice, Knockout , Morphogenesis , Regeneration , YAP-Signaling Proteins/metabolism
17.
Am J Pathol ; 191(5): 885-901, 2021 05.
Article in English | MEDLINE | ID: mdl-33662348

ABSTRACT

Hepatocytes are highly polarized epithelia. Loss of hepatocyte polarity is associated with various liver diseases, including cholestasis. However, the molecular underpinnings of hepatocyte polarization remain poorly understood. Loss of ß-catenin at adherens junctions is compensated by γ-catenin and dual loss of both catenins in double knockouts (DKOs) in mice liver leads to progressive intrahepatic cholestasis. However, the clinical relevance of this observation, and further phenotypic characterization of the phenotype, is important. Herein, simultaneous loss of ß-catenin and γ-catenin was identified in a subset of liver samples from patients of progressive familial intrahepatic cholestasis and primary sclerosing cholangitis. Hepatocytes in DKO mice exhibited defects in apical-basolateral localization of polarity proteins, impaired bile canaliculi formation, and loss of microvilli. Loss of polarity in DKO livers manifested as epithelial-mesenchymal transition, increased hepatocyte proliferation, and suppression of hepatocyte differentiation, which was associated with up-regulation of transforming growth factor-ß signaling and repression of hepatocyte nuclear factor 4α expression and activity. In conclusion, concomitant loss of the two catenins in the liver may play a pathogenic role in subsets of cholangiopathies. The findings also support a previously unknown role of ß-catenin and γ-catenin in the maintenance of hepatocyte polarity. Improved understanding of the regulation of hepatocyte polarization processes by ß-catenin and γ-catenin may potentially benefit development of new therapies for cholestasis.


Subject(s)
Cholestasis, Intrahepatic/pathology , Hepatocyte Nuclear Factor 4/metabolism , Signal Transduction , Transforming Growth Factor beta/metabolism , beta Catenin/metabolism , gamma Catenin/metabolism , Adherens Junctions/metabolism , Animals , Cell Line, Tumor , Cell Polarity , Hepatocyte Nuclear Factor 4/genetics , Hepatocytes/metabolism , Humans , Liver/metabolism , Mice , Mice, Knockout , Transforming Growth Factor beta/genetics , beta Catenin/genetics , gamma Catenin/economics , gamma Catenin/genetics
18.
Hum Mol Genet ; 29(18): 3064-3080, 2020 11 04.
Article in English | MEDLINE | ID: mdl-32886109

ABSTRACT

ANKS6 is a ciliary protein that localizes to the proximal compartment of the primary cilium, where it regulates signaling. Mutations in the ANKS6 gene cause multiorgan ciliopathies in humans, which include laterality defects of the visceral organs, renal cysts as part of nephronophthisis and congenital hepatic fibrosis (CHF) in the liver. Although CHF together with liver ductal plate malformations are common features of several human ciliopathy syndromes, including nephronophthisis-related ciliopathies, the mechanism by which mutations in ciliary genes lead to bile duct developmental abnormalities is not understood. Here, we generated a knockout mouse model of Anks6 and show that ANKS6 function is required for bile duct morphogenesis and cholangiocyte differentiation. The loss of Anks6 causes ciliary abnormalities, ductal plate remodeling defects and periportal fibrosis in the liver. Our expression studies and biochemical analyses show that biliary abnormalities in Anks6-deficient livers result from the dysregulation of YAP transcriptional activity in the bile duct-lining epithelial cells. Mechanistically, our studies suggest, that ANKS6 antagonizes Hippo signaling in the liver during bile duct development by binding to Hippo pathway effector proteins YAP1, TAZ and TEAD4 and promoting their transcriptional activity. Together, this study reveals a novel function for ANKS6 in regulating Hippo signaling during organogenesis and provides mechanistic insights into the regulatory network controlling bile duct differentiation and morphogenesis during liver development.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Carrier Proteins/genetics , DNA-Binding Proteins/genetics , Liver/growth & development , Muscle Proteins/genetics , Transcription Factors/genetics , Animals , Bile Ducts/growth & development , Bile Ducts/metabolism , Bile Ducts/pathology , Cell Differentiation/genetics , Ciliopathies/genetics , Ciliopathies/metabolism , Ciliopathies/pathology , Humans , Liver/abnormalities , Liver/metabolism , Liver/pathology , Mice , Mice, Knockout , Morphogenesis/genetics , Signal Transduction/genetics , TEA Domain Transcription Factors , YAP-Signaling Proteins
19.
Am J Pathol ; 190(5): 1006-1017, 2020 05.
Article in English | MEDLINE | ID: mdl-32205094

ABSTRACT

Chronic cholestasis results from bile secretory defects or impaired bile flow with few effective medical therapies available. Thyroid hormone triiodothyronine and synthetic thyroid hormone receptor agonists, such as sobetirome (GC-1), are known to impact lipid and bile acid (BA) metabolism and induce hepatocyte proliferation downstream of Wnt/ß-catenin signaling after surgical resection; however, these drugs have yet to be studied as potential therapeutics for cholestatic liver disease. Herein, GC-1 was administered to ATP binding cassette subfamily B member 4 (Abcb4-/-; Mdr2-/-) knockout (KO) mice, a sclerosing cholangitis model. KO mice fed GC-1 diet for 2 and 4 weeks had decreased serum alkaline phosphatase but increased serum transaminases compared with KO alone. KO mice on GC-1 also had higher levels of total liver BA due to alterations in expression of BA detoxification, transport, and synthesis genes, with the net result being retention of BA in the hepatocytes. Interestingly, GC-1 does not induce hepatocyte proliferation or Wnt/ß-catenin signaling in KO mice, likely a result of decreased thyroid hormone receptor ß expression without Mdr2. Therefore, although GC-1 treatment induces a mild protection against biliary injury in the early stages of treatment, it comes at the expense of hepatocyte injury and is suboptimal because of lower expression of thyroid hormone receptor ß. Thus, thyromimetics may have limited therapeutic benefits in treating cholestatic liver disease.


Subject(s)
Acetates/pharmacology , Bile Acids and Salts/metabolism , Cholestasis, Intrahepatic , Hepatocytes/drug effects , Phenols/pharmacology , Animals , Disease Models, Animal , Mice , Mice, Knockout
20.
Hepatology ; 72(6): 2165-2181, 2020 12.
Article in English | MEDLINE | ID: mdl-32190913

ABSTRACT

BACKGROUND AND AIMS: Hepatic crisis is an emergent complication affecting patients with sickle cell disease (SCD); however, the molecular mechanism of sickle cell hepatobiliary injury remains poorly understood. Using the knock-in humanized mouse model of SCD and SCD patient blood, we sought to mechanistically characterize SCD-associated hepato-pathophysiology applying our recently developed quantitative liver intravital imaging, RNA sequence analysis, and biochemical approaches. APPROACH AND RESULTS: SCD mice manifested sinusoidal ischemia, progressive hepatomegaly, liver injury, hyperbilirubinemia, and increased ductular reaction under basal conditions. Nuclear factor kappa B (NF-κB) activation in the liver of SCD mice inhibited farnesoid X receptor (FXR) signaling and its downstream targets, leading to loss of canalicular bile transport and altered bile acid pool. Intravital imaging revealed impaired bile secretion into the bile canaliculi, which was secondary to loss of canalicular bile transport and bile acid metabolism, leading to intrahepatic bile accumulation in SCD mouse liver. Blocking NF-κB activation rescued FXR signaling and partially ameliorated liver injury and sinusoidal ischemia in SCD mice. CONCLUSIONS: These findings identify that NF-κB/FXR-dependent impaired bile secretion promotes intrahepatic bile accumulation, which contributes to hepatobiliary injury of SCD. Improved understanding of these processes could potentially benefit the development of therapies to treat sickle cell hepatic crisis.


Subject(s)
Anemia, Sickle Cell/complications , Bile/metabolism , Cholestasis/etiology , Hepatic Insufficiency/etiology , Liver/pathology , Adolescent , Adult , Anemia, Sickle Cell/blood , Anemia, Sickle Cell/drug therapy , Anemia, Sickle Cell/genetics , Animals , Bile Ducts, Intrahepatic/diagnostic imaging , Bile Ducts, Intrahepatic/pathology , Cholestasis/pathology , Cholestasis/prevention & control , Disease Models, Animal , Female , Gene Knock-In Techniques , Hemoglobin, Sickle/genetics , Hepatic Insufficiency/pathology , Hepatic Insufficiency/prevention & control , Humans , Intravital Microscopy , Liver/diagnostic imaging , Male , Mice , Middle Aged , NF-kappa B/antagonists & inhibitors , NF-kappa B/drug effects , NF-kappa B/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Signal Transduction/drug effects , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...