Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Genomics ; 10: 451, 2009 Sep 23.
Article in English | MEDLINE | ID: mdl-19775440

ABSTRACT

BACKGROUND: The freshwater snail Lymnaea stagnalis (L. stagnalis) has served as a successful model for studies in the field of Neuroscience. However, a serious drawback in the molecular analysis of the nervous system of L. stagnalis has been the lack of large-scale genomic or neuronal transcriptome information, thereby limiting the use of this unique model. RESULTS: In this study, we report 7,712 distinct EST sequences (median length: 847 nucleotides) of a normalized L. stagnalis central nervous system (CNS) cDNA library, resulting in the largest collection of L. stagnalis neuronal transcriptome data currently available. Approximately 42% of the cDNAs can be translated into more than 100 consecutive amino acids, indicating the high quality of the library. The annotated sequences contribute 12% of the predicted transcriptome size of 20,000. Surprisingly, approximately 37% of the L. stagnalis sequences only have a tBLASTx hit in the EST library of another snail species Aplysia californica (A. californica) even using a low stringency e-value cutoff at 0.01. Using the same cutoff, approximately 67% of the cDNAs have a BLAST hit in the NCBI non-redundant protein and nucleotide sequence databases (nr and nt), suggesting that one third of the sequences may be unique to L. stagnalis. Finally, using the same cutoff (0.01), more than half of the cDNA sequences (54%) do not have a hit in nematode, fruitfly or human genome data, suggesting that the L. stagnalis transcriptome is significantly different from these species as well. The cDNA sequences are enriched in the following gene ontology functional categories: protein binding, hydrolase, transferase, and catalytic enzymes. CONCLUSION: This study provides novel molecular insights into the transcriptome of an important molluscan model organism. Our findings will contribute to functional analyses in neurobiology, and comparative evolutionary biology. The L. stagnalis CNS EST database is available at http://www.Lymnaea.org/.


Subject(s)
Central Nervous System/metabolism , Expressed Sequence Tags , Gene Expression Profiling , Lymnaea/genetics , Amino Acid Sequence , Animals , Aplysia/genetics , Biomphalaria/genetics , Chromosome Mapping , Comparative Genomic Hybridization , Computational Biology , Gene Library , Molecular Sequence Data , Phylogeny , Sequence Alignment
2.
Neuroscience ; 161(2): 621-34, 2009 Jun 30.
Article in English | MEDLINE | ID: mdl-19324076

ABSTRACT

Chronic hypoxia is a common clinical event that induces adaptive responses and can result in behavioral deterioration. The reduction of metabolic rate during hypoxia may limit overall protein phosphorylation owing to the lack of high energy phosphate. However, the hypoxia-induced regulation of phosphoproteins is poorly understood. Here, we characterized the CNS phosphoproteome of Lymnaea stagnalis, a freshwater snail that has been used as a model to study chronic hypoxia-induced neural depression. After hypoxia treatment for 4 days, the motor behavior of the snail was suppressed. Electrophysiological measurements from Pedal A (PeA) interneurons showed that hypoxia increased the frequency of spontaneous postsynaptic excitatory potentials (sEPSPs), but reduced the firing frequency, the amplitude, and the half-width duration (APD(50)) of spontaneous action potentials. Imaging with a fluorescent phosphate label, Pro-Q Diamond, revealed that the neuronal phosphoprotein level was reduced after the hypoxia treatment. The hypoxia-induced changes in the phosphoproteome of the central ganglia were quantified using one-dimensional gel-electrophoresis by comparing the fluorescence intensity ratio of phospholabeled phosphoproteins versus total proteins between the hypoxia and control groups. We analyzed 16 protein bands: eight showed decreased phosphorylation levels after hypoxia treatment, and eight did not change. Using mass spectrometry analysis and protein database matching we found three phosphoproteins that may be associated with chronic hypoxia-induced neuronal adaptive response of the snail. This is the first proteomic screening for neural phosphoproteins in chronic hypoxia.


Subject(s)
Hypoxia/metabolism , Neurons/physiology , Phosphoproteins/metabolism , Action Potentials , Adaptation, Physiological , Animals , Behavior, Animal , Chronic Disease , Disease Models, Animal , Excitatory Postsynaptic Potentials , Ganglia, Invertebrate/metabolism , Ganglia, Invertebrate/physiopathology , Hypoxia/physiopathology , Lymnaea , Motor Activity , Proteomics
SELECTION OF CITATIONS
SEARCH DETAIL
...