Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Food Sci Nutr ; 12(2): 1146-1157, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38370065

ABSTRACT

Diversification of gluten-free (GF) bakery products is considerably important, as those who suffer from gluten intolerance should follow a GF diet their whole life. Regarding this study, it was aimed at optimizing the formulation of a quinoa-based GF traditional bakery product, i.e. Nan-e-Fasaee using inulin as a bifunctional agent (both a prebiotic compound and a structure-forming agent). Otherwise, its potential role as a fat and sugar replacer was also assessed. For this purpose, short (S)- and long (L)-chain inulin were used as sugar and fat replacers, respectively, at 0%-50% w/w in quinoa flour (QF)-based GF Nan-e-Fasaee and optimization was done based on rheological, textural, and sensory analysis. Results indicated that QF diet provided the batter with the dominance of elastic modulus and increased hardness (i.e. 5170.0 ± 22.50 g in the presence of QF compared to 1477.0 ± 20.81 g in wheat-based ones). Inulin inclusion reduced the hardness, as the lowest was observed at S-inulin substitution levels of 40% and 50% w/w, with values equal to 2422.0 ± 20.81 and 2431.0 ± 35.57 g, respectively (the most similar ones to control sample). The interference of S-inulin with the non-gelatinized starch structure is supposed to decrease the hardness. The highest score in texture was also perceived at F6 and F13, with values equal to 8.00 ± 0.10 and 7.97 ± 0.05, respectively. Using S- and L-inulin in combination is found to improve the textural characteristics due to preventing the competitive role of sugar in water absorption in formulations containing L-inulin. Regarding optimization of quinoa-based GF Nan-e-Fasaee with reduced sugar and fat levels using inulin, it is found to be feasible.

2.
Basic Clin Pharmacol Toxicol ; 133(6): 743-756, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37732939

ABSTRACT

Chlorpyrifos (CPF) has caused many potential toxicities in nontarget organisms. Fewer studies have been conducted on the effects of lactic acid bacteria (LAB) in mitigating tissue damage induced by CPF in vivo. Therefore, we investigated CPF renal and testicular toxicity and the alleviating effect of probiotic lactobacilli, based on antioxidant and anti-inflammatory activity, on induced toxicity in an animal model. Biochemical assays showed that CPF induced oxidative stress along with a change in superoxide dismutase (SOD) and catalase (CAT) activity in a tissue-dependent manner. After treatment with CPF, testicular and renal levels of TNF-α were significantly reduced and enhanced, respectively, compared to the control group. The probiotic treatment restored renal and testicular TNF-α levels and modulated and blocked the increasing effect of CPF on renal IL-1ß levels. Testicular IL-1ß levels in the probiotic-treated and CPF groups demonstrated similar values. Exposure to CPF significantly induced renal histopathological damage that, of course, was completely inhibited by treatment with Lactobacillus casei and the LAB mixture. In summary, CPF showed significant toxicological effects on oxidative stress and the inflammation rate in CPF-exposed rats. Therefore, supplementation with probiotic bacteria may alleviate CPF renal toxicity and mitigate its oxidative stress and inflammation effects.


Subject(s)
Chlorpyrifos , Insecticides , Probiotics , Rats , Animals , Antioxidants/pharmacology , Chlorpyrifos/toxicity , Tumor Necrosis Factor-alpha , Oxidative Stress , Inflammation/chemically induced , Inflammation/prevention & control , Probiotics/pharmacology , Anti-Inflammatory Agents/pharmacology , Bacteria , Insecticides/toxicity
3.
Food Sci Nutr ; 10(6): 1725-1744, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35702299

ABSTRACT

Cereals, as the main crops cultivated and consumed in the world, are a rich source of carbohydrates, proteins, dietary fiber, and minerals. Despite the nutritional importance, their technological applicability in food matrices is also considerably important to be determined. Cereal processing is done to achieve goals as increasing the shelf-life, obtaining the desired technological function, and enhancing the nutritional value. Nonthermal processing is preferred regarding its potential to provide beneficial impacts with minimum adverse effect. Technological functionality and nutritional performance are considered as the most basic challenges through cereal processing, with proteins as the main factor to take part in such roles. Technological and nutritional functionalities of proteins have been found to be changed through nonthermal processing, which is generally attributed to conformational and structural changes. Therefore, this study is aimed to investigate the impact of nonthermal processing on nutritional and technological characteristics of cereal proteins.

4.
Environ Toxicol ; 37(4): 880-888, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34985812

ABSTRACT

Chlorpyrifos (CPF) is an extensively used organophosphorus pesticide for agricultural, industrial, and domestic purposes. Previous studies have reported the adverse effects of CPF, such as intoxication incidents, endocrine disruption, cardiovascular diseases, as well as histopathological and oxidative damage. The aims of the present study were to elucidate short time subacute toxicity of CPF in male rats. Sprague-Dawley male rats (n = 32) were divided into four groups (n = 8) and received CPF as 3.25 mg/kg body weight (b.w) (Group A), 6.75 mg/kg b.w (Group B), 13.5 mg/kg b.w (Group C), and corn oil (control or Group D) daily via gavage for 15 days. The rats were sacrificed and oxidative damages, pro-inflammatory cytokines (TNF-α, IL-1ß), and histopathological changes were determined in the lung, liver, kidney, heart, and testis tissues as well as plasma. According to our result, administration of CPF caused a significant increase in malondialdehid level and catalase activity while a significant decrease in superoxide dismutase activity in all tissues. In addition, a significant decrease in TNF-α observed in all tissues and plasma duo to the CPF. Histopathological evaluation of CPF-treated samples revealed a dose-dependent tissue toxicity in the liver, heart, lung, and kidney with less sensitivity of testicular and kidney tissues. These results suggest the potential of CPF in inducing oxidative stress at low doses and short duration time with similar trends in different tissues. As well as, due to the effects of CPF on some pro-inflammatory mediators, more comprehensive studies are recommended.


Subject(s)
Chlorpyrifos , Pesticides , Animals , Antioxidants/pharmacology , Chlorpyrifos/toxicity , Cytokines , Male , Organophosphorus Compounds , Rats , Rats, Sprague-Dawley
5.
Environ Sci Pollut Res Int ; 28(43): 61213-61224, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34169416

ABSTRACT

The main objective of this work was to study the effects of probiotic strains, probiotic primary inoculated population, concentrations of spiked diazinon, physiology of probiotic bacteria, fermentation times, and cold storage period in six consecutive stages on diazinon reduction in apple juice. Chemical properties (pH, total acidity, and sugar content), probiotic viability, and diazinon reduction percent were monitored during fermentation and cold storage. Dispersive solid phase extraction (dSPE) followed by gas chromatography-mass spectrometry was used to extract and measure diazinon concentration. Results showed that Lactobacillus acidophilus revealed the highest ability to reduce diazinon in apple juice after fermentation. Inoculation of L. acidophilus at 9 log CFU/mL showed significantly higher diazinon reducing ability than 7 log CFU/mL. L. acidophilus reduced diazinon in apple juice samples containing 1000 µg/L of spiked diazinon significantly higher than those containing 5000 µg/L. Heat-killed (dead) L. acidophilus bacteria reduced less diazinon content at the end of fermentation than viable bacteria. Furthermore, 72 h of fermentation was more effective in diazinon reduction. Spiked diazinon is completely disappeared at the end of cold storage (28 days) in treatments containing L. acidophilus, while the viability of probiotic bacteria required for causing health-promoting properties was maintained in apple juice.


Subject(s)
Malus , Probiotics , Diazinon , Fermentation , Lactobacillus acidophilus , Refrigeration
SELECTION OF CITATIONS
SEARCH DETAIL
...