Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Methods Inf Med ; 52(4): 326-39, 2013.
Article in English | MEDLINE | ID: mdl-23877537

ABSTRACT

OBJECTIVES: Detecting hints to public health threats as early as possible is crucial to prevent harm from the population. However, many disease surveillance strategies rely upon data whose collection requires explicit reporting (data transmitted from hospitals, laboratories or physicians). Collecting reports takes time so that the reaction time grows. Moreover, context information on individual cases is often lost in the collection process. This paper describes a system that tries to address these limitations by processing social media for identifying information on public health threats. The primary objective is to study the usefulness of the approach for supporting the monitoring of a population's health status. METHODS: The developed system works in three main steps: Data from Twitter, blogs, and forums as well as from TV and radio channels are continuously collected and filtered by means of keyword lists. Sentences of relevant texts are classified relevant or irrelevant using a binary classifier based on support vector machines. By means of statistical methods known from biosurveillance, the relevant sentences are further analyzed and signals are generated automatically when unexpected behavior is detected. From the generated signals a subset is selected for presentation to a user by matching with user queries or profiles. In a set of evaluation experiments, public health experts assessed the generated signals with respect to correctness and relevancy. In particular, it was assessed how many relevant and irrelevant signals are generated during a specific time period. RESULTS: The experiments show that the system provides information on health events identified in social media. Signals are mainly generated from Twitter messages posted by news agencies. Personal tweets, i.e. tweets from persons observing some symptoms, only play a minor role for signal generation given a limited volume of relevant messages. Relevant signals referring to real world outbreaks were generated by the system and monitored by epidemiologists for example during the European football championship. But, the number of relevant signals among generated signals is still very small: The different experiments yielded a proportion between 5 and 20% of signals regarded as "relevant" by the users. Vaccination or education campaigns communicated via Twitter as well as use of medical terms in other contexts than for outbreak reporting led to the generation of irrelevant signals. CONCLUSIONS: The aggregation of information into signals results in a reduction of monitoring effort compared to other existing systems. Against expectations, only few messages are of personal nature, reporting on personal symptoms. Instead, media reports are distributed over social media channels. Despite the high percentage of irrelevant signals generated by the system, the users reported that the effort in monitoring aggregated information in form of signals is less demanding than monitoring huge social-media data streams manually. It remains for the future to develop strategies for reducing false alarms.


Subject(s)
Blogging/statistics & numerical data , Internet/statistics & numerical data , Medical Informatics Computing/statistics & numerical data , Public Health Surveillance/methods , Algorithms , Artificial Intelligence , Data Collection/methods , Electronic Data Processing , Humans , Reproducibility of Results
2.
Artif Intell Med ; 10(3): 209-34, 1997 Jul.
Article in English | MEDLINE | ID: mdl-9232186

ABSTRACT

Most current model-based diagnosis formalisms and algorithms are defined only for static systems, which is often inadequate for medical reasoning. In this paper we describe a model-based framework plus algorithms for diagnosing time-dependent systems where we can define qualitative temporal scenarios. Complex temporal behavior is described within a logical framework extended by qualitative temporal constraints. Abstract observations aggregate from observations at time points to assumptions over time intervals. These concepts provide a very natural representation and make diagnosis independent of the number of actual observations and the temporal resolution. The concept of abstract temporal diagnosis captures in a natural way the kind of indefinite temporal knowledge which is frequently available in medical diagnoses. We use viral hepatitis B (including a set of real hepatitis B data) to illustrate and evaluate our framework. The comparison of our results with the results of HEPAXPERT-I is promising. The diagnosis computed in our system is often more precise than the diagnosis in HEPAXPERT-I and we detect inconsistent data sequences which cannot be detected in the latter system.


Subject(s)
Artificial Intelligence , Diagnosis, Computer-Assisted , Hepatitis B/diagnosis , Models, Theoretical , Algorithms , Humans , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...