Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Opin Syst Biol ; 13: 108-114, 2019 Feb.
Article in English | MEDLINE | ID: mdl-32984659

ABSTRACT

Ecological studies need experimentation to test concepts and to disentangle causality in community dynamics. While simple models have given substantial insights into population and community dynamics, recent ecological concepts become increasingly complex. The globally important pelagic food web dynamics are well suited to test complex ecological concepts. For instance, trophic switches of individual organisms within pelagic food webs can elongate food webs or shift the balance between autotroph and heterotroph carbon fluxes. Here, we summarize results from mesocosm experiments demonstrating how environmental drivers result in trophic switches of marine phytoplankton and zooplankton communities. Such mesocosm experiments are useful to develop and test complex ecological concepts going beyond trophic level-based analyses, including diversity, individual behavior, and environmental stochasticity.

2.
Mar Drugs ; 9(3): 345-58, 2011 Mar 11.
Article in English | MEDLINE | ID: mdl-21556164

ABSTRACT

A survey of the production of polyunsaturated aldehydes (PUA) of manipulated plankton communities is presented here. PUA are phytoplankton-derived metabolites that are proposed to play an important role in chemically mediated plankton interactions. Blooms of different intensities of the diatom Skeletonema marinoi were generated in eight mesocosms filled with water from the surrounding fjord by adding different amounts of a starting culture and nutrients. This set-up allowed us to follow PUA production of the plankton community over the entire induced bloom development, and to compare it with the natural levels of PUA. We found that S. marinoi is a major source for the particulate PUA 2,4-heptadienal and 2,4-octadienal (defined as PUA released upon wounding of the diatom cells) during the entire bloom development. Just before, and during, the decline of the induced diatom blooms, these PUA were also detected in up to 1 nM concentrations dissolved in the water. In addition, we detected high levels of the PUA 2,4-decadienal that was not produced by the diatom S. marinoi. Particulate decadienal correlated well with the cell counts of the prymnesiophyte Phaeocystis sp. that also developed in the fertilized mesocosms. Particulate decadienal levels were often even higher than those of diatom-derived PUA, indicating that PUA sources other than diatoms should be considered when it comes to the evaluation of the impact of these metabolites.


Subject(s)
Aldehydes/metabolism , Diatoms/metabolism , Phytoplankton/metabolism , Alkadienes/metabolism , Marine Biology
SELECTION OF CITATIONS
SEARCH DETAIL
...