Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Cycle ; 15(23): 3203-3209, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27831832

ABSTRACT

Small molecule inhibitors targeting CDK1/CDK2 have been clinically proven effective against a variety of tumors, albeit at the cost of profound off target toxicities. To separate potential therapeutic from toxic effects, we selectively knocked down CDK1 or CDK2 in p53 mutated HACAT cells by siRNA silencing. Using dynamic, cell cycle wide proteome arrays, we observed minor changes in overall abundance of proteins critically involved in cell cycle transition despite profound G2/M or G1/S arrest, respectively. Employing phospho site specific analyses, we identified uncoupled mitogenic, yet pro-apoptotic signaling from counter balancing anti-apoptotic activity in CDK2 disrupted cells. Moreover, a crucial role of CDK2 activity in early serum response was observed, extending well-established roles of CDKs outside their cell cycle regulating functions. In contrast, disruption of CDK1 only marginally affected phosphorylation events of crucial signaling nodes prior to G2/S transition. The data presented here suggest that the temporal separation of pro- and anti-apoptotic pathways by selective inhibition of CDK2 disrupts coherent signaling modules and may synergize with anti-proliferative drugs, averting toxic side effects from CDK1 inhibition.


Subject(s)
Apoptosis , CDC2 Protein Kinase/metabolism , Gene Silencing , Mitosis , Signal Transduction , Synthetic Lethal Mutations/genetics , Tumor Suppressor Protein p53/metabolism , CDC2 Protein Kinase/deficiency , Cell Line , Humans , Keratinocytes/cytology , Keratinocytes/metabolism , Kinetics , Mitosis/genetics , Phosphorylation , RNA, Small Interfering/metabolism
4.
Cell Cycle ; 13(14): 2192-8, 2014.
Article in English | MEDLINE | ID: mdl-24846461

ABSTRACT

miRNAs are critically implicated in the initiation process of and progression through cancerogenesis. The mechanisms, however, by which miRNAs interfere with the signalosomes of human cancer cells, are still obscure. We utilized the p53-mutated human keratinocyte cell line HACAT to investigate the biological significance and extent to which miRNAs regulate proliferation, cell growth, and apoptosis in transformed phenotypes. Silencing of the miRNA-processing enzyme Dicer1 resulted in cell cycle arrest at the G1/S border, along with restoration of CDK inhibitor p21(CIP)expression. Employing a cell cycle-wide phospho-proteomic approach, we detected neglectable changes in abundance and schedule of overall and cell cycle periodic protein expression despite cell cycle arrest of Dicer1-depleted cells. Instead, we found substantially delayed post-translational modifications of some, but not all, signaling nodes. Phospho-site-specific analyses revealed that pro-apoptotic information elicited by Myc, ß-catenin, and other mitotic pathways early in G1 are absorbed and balanced by anti-apoptotic signaling from AKT and NFκB in Dicer1-competent cells. The absence of regulatory miRNAs, however, led to a substantial delay of anti-apoptotic signaling, leaving pro-apoptotic stress unbalanced in Dicer1-deprived cells. We here show that this temporal separation of pro- and anti-apoptotic signaling induced by inhibition of Dicer1 is synergistic and synthetic lethal to low-dose 5-FU chemotherapy in p53-mutated HACAT cells. The findings reported here contribute to the understanding of the complex interactions of miRNAs with the signalosom of transformed phenotypes and may help to design novel strategies to fight cancer.


Subject(s)
Antimetabolites, Antineoplastic/pharmacology , Apoptosis/drug effects , DEAD-box RNA Helicases/genetics , Fluorouracil/pharmacology , Keratinocytes/drug effects , Mutation , RNA Interference , Ribonuclease III/genetics , Signal Transduction/drug effects , Tumor Suppressor Protein p53/genetics , Cell Cycle Checkpoints/drug effects , Cell Line , DEAD-box RNA Helicases/metabolism , Dose-Response Relationship, Drug , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Neoplastic , Genotype , Humans , Keratinocytes/enzymology , Keratinocytes/pathology , Phenotype , Ribonuclease III/metabolism , Time Factors , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...