Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Nanoscale ; 15(46): 18891-18900, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37975176

ABSTRACT

The growth of Ag clusters on amorphous carbon substrates is studied in situ by X-ray scattering experiments, whose final outcome is imaged by electron microscopy. The real-time analysis of the growth process at room temperature shows the formation of a large majority of icosahedral structures by a shell-by-shell growth mode which produces smooth and nearly defect-free structures. Molecular dynamics simulations supported by ab initio calculations reveal that the shell-by-shell mode is possible because of the occurrence of collective displacements which involve the concerted motion of many atoms of the growing shell. These collective processes are a kind of black swan event, as they occur suddenly and rarely, but their occurrence is decisive for the final outcome of the growth. Annealing and ageing experiments show that the as-grown icosahedra are metastable, in agreement with the energetic stability calculations.

2.
Nanoscale Horiz ; 9(1): 143-147, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-37877366

ABSTRACT

The multi-dimensional potential energy surface (PES) of a nanoparticle, such as a bare cluster of metal atoms, controls both the structure and dynamic behaviour of the particle. These properties are the subject of numerous theoretical simulations. However, quantitative experimental measurements of critical PES parameters are needed to regulate the models employed in the theoretical work. Experimental measurements of parameters are currently few in number, while model parameters taken from bulk systems may not be suitable for nanosystems. Here we describe a new measurement methodology, in which the isomer structures of a single deposited nanocluster are obtained frame-by-frame in an aberration-corrected scanning transmission electron microscope (ac-STEM) in high angle annular dark field (HAADF) mode. Several gold clusters containing 309 ± 15 atoms were analysed individually after deposition from a mass-selected cluster source onto an amorphous carbon film. The main isomers identified are icosahedral (Ih), decahedral (Dh) and face-centred-cubic (fcc) (the bulk structure), alongside many amorphous (glassy) structures. The results, which are broadly consistent with static ac-STEM measurements of an ensemble of such clusters, open the way to dynamic measurements of many different nanoparticles of diverse sizes, shapes and compositions.

3.
Nano Lett ; 23(7): 2644-2650, 2023 Apr 12.
Article in English | MEDLINE | ID: mdl-36995102

ABSTRACT

The growth of pyramidal platinum nanocrystals is studied by a combination of synthesis/characterization experiments and density functional theory calculations. It is shown that the growth of pyramidal shapes is due to a peculiar type of symmetry breaking, which is caused by the adsorption of hydrogen on the growing nanocrystals. Specifically, the growth of pyramidal shapes is attributed to the size-dependent adsorption energies of hydrogen atoms on {100} facets, whose growth is hindered only if they are sufficiently large. The crucial role of hydrogen adsorption is further confirmed by the absence of pyramidal nanocrystals in experiments where the reduction process does not involve hydrogen.

4.
ACS Nano ; 17(1): 587-596, 2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36537367

ABSTRACT

The solidification of AgCo, AgNi, and AgCu nanodroplets is studied by molecular dynamics simulations in the size range of 2-8 nm. All these systems tend to phase separate in the bulk solid with surface segregation of Ag. Despite these similarities, the simulations reveal clear differences in the solidification pathways. AgCo and AgNi already separate in the liquid phase, and they solidify in configurations close to equilibrium. They can show a two-step solidification process in which Co-/Ni-rich parts solidify at higher temperatures than the Ag-rich part. AgCu does not separate in the liquid and solidifies in one step, thereby remaining in a kinetically trapped state down to room temperature. The solidification mechanisms and the size dependence of the solidification temperatures are analyzed, finding qualitatively different behaviors in AgCo/AgNi compared to AgCu. These differences are rationalized by an analytical model.

6.
Faraday Discuss ; 242(0): 52-68, 2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36178100

ABSTRACT

Nanoalloys are often grown or synthesized in non-equilibrium configurations whose further evolution towards equilibrium can take place through complex pathways. In this work, we consider bimetallic systems with tendency towards intermixing, namely AgAu, PtPd and AuCu. We analyze their evolution starting from non-equilibrium initial configurations, such as phase-separated core@shell ones, by means of molecular dynamics (MD) simulations. These systems present some differences, since AuCu bulk alloys make ordered phases at low temperature whereas AgAu and PtPd remain in solid solution. Moreover, Cu, Au and Ag have similar cohesive energies whereas Pt is much more cohesive than Pd. We consider both truncated octahedral and icosahedral initial shapes in the size range between 2 and 3 nm. For each AB system, we consider both A@B and B@A core@shell starting configurations. The evolution is characterized by monitoring the time-dependent degree of intermixing and the evolution of the shape. The simulations are performed up to temperatures close to the melting range. The approach to thermodynamic equilibrium is monitored by MD simulations and compared with the equilibrium chemical configurations obtained by Monte Carlo simulations.

7.
Nanoscale Horiz ; 7(8): 883-889, 2022 07 25.
Article in English | MEDLINE | ID: mdl-35722927

ABSTRACT

The growth pathways from tetrahedral to multiply twinned gold nanoparticles in the gas phase are studied by molecular dynamics simulations supported by density functional theory calculations. Our results show that the growth from a tetrahedron to a multiple twin can take place by different pathways: directly from a tetrahedron to a decahedron (Th → Dh pathway), directly from a tetrahedron to an icosahedral fragment (Th → Ih), and from a tetrahedron to an icosahedron passing through an intermediate decahedron (Th → Dh → Ih). The simulations allow to determine the key atomic-level growth mechanism at the origin of twinning in metal nanoparticles. This mechanism is common to all these pathways and starts from the preferential nucleation of faulted atomic islands in the vicinity of facet edges, leading to the formation and stabilization of twin planes and of fivefold symmetry axes.


Subject(s)
Gold , Metal Nanoparticles , Molecular Dynamics Simulation
8.
J Chem Phys ; 155(14): 144304, 2021 Oct 14.
Article in English | MEDLINE | ID: mdl-34654289

ABSTRACT

Atomic diffusion is at the basis of chemical ordering transformations in nanoalloys. Understanding the diffusion mechanisms at the atomic level is therefore a key issue in the study of the thermodynamic behavior of these systems and, in particular, of their evolution from out-of-equilibrium chemical ordering types often obtained in the experiments. Here, the diffusion is studied in the case of a single-atom impurity of Ag or Au moving within otherwise pure magic-size icosahedral clusters of Cu or Co by means of two different computational techniques, i.e., molecular dynamics and metadynamics. Our simulations reveal unexpected diffusion pathways, in which the displacement of the impurity is coupled with the creation of vacancies in the central part of the cluster. We show that the observed mechanism is quite different from the vacancy-mediated diffusion processes identified so far, and we demonstrate that it can be related to the presence of non-homogeneous compressive stress in the inner part of the icosahedral structure.

9.
J Phys Chem Lett ; 12(19): 4609-4615, 2021 May 20.
Article in English | MEDLINE | ID: mdl-33971714

ABSTRACT

The shape of AuPd nanoparticles is engineered by surface stress relaxation, achieved by varying the Au content in nanoparticles of Pd-rich compositions. AuPd nanoparticles are grown in the gas phase for several compositions and growth conditions. Their structure is atomically resolved by HRTEM/STEM and EDX. In pure Pd distributions the dominant structures are FCC truncated octahedra (TO), while increasing the Au content there is a transition to icosahedral (Ih) structures in which Au atoms are preferentially placed at the nanoparticle surface. The transition is sharper for growth conditions closer to equilibrium. The physical origin of the transition is determined with the aid of computer simulations. Global optimization searches and free energy calculations confirm that Ih become the equilibrium structure for increasing the Au content. Atomic stress calculations demonstrate that the TO → Ih shape change is caused by a better relaxation of anisotropic surface stress in icosahedra.

10.
Nat Commun ; 12(1): 3019, 2021 May 21.
Article in English | MEDLINE | ID: mdl-34021147

ABSTRACT

Controlled growth of far-from-equilibrium-shaped nanoparticles with size selection is essential for the exploration of their unique physical and chemical properties. Shape control by wet-chemistry preparation methods produces surfactant-covered surfaces with limited understanding due to the complexity of the processes involved. Here, we report the controlled production and transformation of octahedra to tetrahedra of size-selected platinum nanocrystals with clean surfaces in an inert gas environment. Molecular dynamics simulations of the growth reveal the key symmetry-breaking atomic mechanism for this autocatalytic shape transformation, confirming the experimental conditions required. In-situ heating experiments demonstrate the relative stability of both octahedral and tetrahedral Pt nanocrystals at least up to 700 °C and that the extended surface diffusion at higher temperature transforms the nanocrystals into equilibrium shape.

11.
Nanoscale Adv ; 3(3): 836-846, 2021 Feb 10.
Article in English | MEDLINE | ID: mdl-36133833

ABSTRACT

Coalescence is a phenomenon in which two or more nanoparticles merge to form a single larger aggregate. By means of gas-phase magnetron-sputtering aggregation experiments on Pt-Pd nanoalloys, it is shown that the degree of coalescence can be tuned from a growth regime in which coalescence is negligible to a regime where the growth outcome is dominated by coalescence events. This transition is achieved by varying both the length of the aggregation zone and the pressure difference between the aggregation and the deposition chamber. In the coalescence-dominated regime, a wide variety of coalescing aggregates is produced and analyzed by TEM. The experimental results are interpreted with the aid of molecular-dynamics simulations. This allows to distinguish four different steps through which coalescence proceeds towards equilibrium. These steps, occurring on a hierarchy of well-separated time scales, consist in: (i) alignment of atomic columns; (ii) alignment of close-packed atomic planes; (iii) equilibration of shape; (iv) equilibration of chemical ordering.

12.
Nanoscale ; 12(14): 7688-7699, 2020 Apr 14.
Article in English | MEDLINE | ID: mdl-32211622

ABSTRACT

The atomic configuration of nanoparticles is key to their properties, in a way that resembles the structure-function correlation of biomolecules, and depends on the growth mechanism. Coalescence is often an important step in the growth of nanoparticles, both in liquid and in the gas phase. In coalescence, two preformed clusters collide and merge to form a larger aggregate, whose shape evolves from an initial configuration, which is strongly out of equilibrium, towards more compact structures. Here the coalescence in the gas phase of gold clusters of size ∼2 nm is simulated by the Molecular Dynamics (MD) method. Our simulations reveal a persistent influence of the structure and relative orientation of the initial colliding clusters on the final coalesced aggregates, even after more than 1 µs at temperature T = 500 K. This result is interpreted in terms of a special type of kinetic trapping, in which the choice of the structural motif takes place in the initial stages of the coalescence process. In the subsequent evolution, the coalescing aggregate may equilibrate within that motif, while transformations between different motifs are not observed, so that inter-motif equilibration is not achieved. Inter-motif equilibration is only achieved at 550 K and above. The simulations also show that aggregate reshaping occurs by a variety of specific transformation pathways, which often involve the concerted displacements of many atoms.

13.
Nanoscale ; 11(27): 13040-13050, 2019 Jul 21.
Article in English | MEDLINE | ID: mdl-31265042

ABSTRACT

The evolution towards equilibrium of AuCo, AgNi and AgCu nanoparticles is studied by molecular dynamics simulations. Nanoparticle sizes of about 2.5 nm are considered, in the temperature range from 300 to 700 K. The simulations reveal complex equilibration pathways, in which geometric structure and chemical ordering change with time. These nanoparticles present the same type of strong tendency to phase separation and to surface segregation of either Au or Ag, which lead to the same type of core@shell equilibrium structures. In spite of these similarities, the equilibration pathways of these nanoparticles from chemically disordered configurations present both quantitative and qualitative differences. Quantitative differences are found in the equilibration time scale, which is much longer in AgCu than in AgNi and AuCo. Qualitative differences are found in the presence or absence of geometric structure transformations, and in the formation of different types of three-shell metastable chemical ordering during evolution. It is also shown that surface segregation depends on the geometric structure, being faster in icosahedra than in fcc nanoparticles.

SELECTION OF CITATIONS
SEARCH DETAIL
...