Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Appl ; 32(8): e2714, 2022 12.
Article in English | MEDLINE | ID: mdl-36184581

ABSTRACT

A clear connection between basic research and applied management is often missing or difficult to discern. We present a case study of integration of basic research with applied management for estimating abundance of gray wolves (Canis lupus) in Montana, USA. Estimating wolf abundance is a key component of wolf management but is costly and time intensive as wolf populations continue to grow. We developed a multimodel approach using an occupancy model, mechanistic territory model, and empirical group size model to improve abundance estimates while reducing monitoring effort. Whereas field-based wolf counts generally rely on costly, difficult-to-collect monitoring data, especially for larger areas or population sizes, our approach efficiently uses readily available wolf observation data and introduces models focused on biological mechanisms underlying territorial and social behavior. In a three-part process, the occupancy model first estimates the extent of wolf distribution in Montana, based on environmental covariates and wolf observations. The spatially explicit mechanistic territory model predicts territory sizes using simple behavioral rules and data on prey resources, terrain ruggedness, and human density. Together, these models predict the number of packs. An empirical pack size model based on 14 years of data demonstrates that pack sizes are positively related to local densities of packs, and negatively related to terrain ruggedness, local mortalities, and intensity of harvest management. Total abundance estimates for given areas are derived by combining estimated numbers of packs and pack sizes. We estimated the Montana wolf population to be smallest in the first year of our study, with 91 packs and 654 wolves in 2007, followed by a population peak in 2011 with 1252 wolves. The population declined ~6% thereafter, coincident with implementation of legal harvest in Montana. Recent numbers have largely stabilized at an average of 191 packs and 1141 wolves from 2016 to 2020. This new approach accounts for biologically based, spatially explicit predictions of behavior to provide more accurate estimates of carnivore abundance at finer spatial scales. By integrating basic and applied research, our approach can therefore better inform decision-making and meet management needs.


Subject(s)
Wolves , Animals , Humans , Ecosystem , Population Density , Social Behavior , Montana
2.
Proc Biol Sci ; 288(1946): 20210108, 2021 03 10.
Article in English | MEDLINE | ID: mdl-33653139

ABSTRACT

As an outcome of natural selection, animals are probably adapted to select territories economically by maximizing benefits and minimizing costs of territory ownership. Theory and empirical precedent indicate that a primary benefit of many territories is exclusive access to food resources, and primary costs of defending and using space are associated with competition, travel and mortality risk. A recently developed mechanistic model for economical territory selection provided numerous empirically testable predictions. We tested these predictions using location data from grey wolves (Canis lupus) in Montana, USA. As predicted, territories were smaller in areas with greater densities of prey, competitors and low-use roads, and for groups of greater size. Territory size increased before decreasing curvilinearly with greater terrain ruggedness and harvest mortalities. Our study provides evidence for the economical selection of territories as a causal mechanism underlying ecological patterns observed in a cooperative carnivore. Results demonstrate how a wide range of environmental and social conditions will influence economical behaviour and resulting space use. We expect similar responses would be observed in numerous territorial species. A mechanistic approach enables understanding how and why animals select particular territories. This knowledge can be used to enhance conservation efforts and more successfully predict effects of conservation actions.


Subject(s)
Carnivora , Wolves , Animals , Montana , Selection, Genetic , Territoriality
3.
Ecology ; 94(6): 1245-56, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23923485

ABSTRACT

Migration is a striking behavioral strategy by which many animals enhance resource acquisition while reducing predation risk. Historically, the demographic benefits of such movements made migration common, but in many taxa the phenomenon is considered globally threatened. Here we describe a long-term decline in the productivity of elk (Cervus elaphus) that migrate through intact wilderness areas to protected summer ranges inside Yellowstone National Park, USA. We attribute this decline to a long-term reduction in the demographic benefits that ungulates typically gain from migration. Among migratory elk, we observed a 21-year, 70% reduction in recruitment and a 4-year, 19% depression in their pregnancy rate largely caused by infrequent reproduction of females that were young or lactating. In contrast, among resident elk, we have recently observed increasing recruitment and a high rate of pregnancy. Landscape-level changes in habitat quality and predation appear to be responsible for the declining productivity of Yellowstone migrants. From 1989 to 2009, migratory elk experienced an increasing rate and shorter duration of green-up coincident with warmer spring-summer temperatures and reduced spring precipitation, also consistent with observations of an unusually severe drought in the region. Migrants are also now exposed to four times as many grizzly bears (Ursus arctos) and wolves (Canis lupus) as resident elk. Both of these restored predators consume migratory elk calves at high rates in the Yellowstone wilderness but are maintained at low densities via lethal management and human disturbance in the year-round habitats of resident elk. Our findings suggest that large-carnivore recovery and drought, operating simultaneously along an elevation gradient, have disproportionately influenced the demography of migratory elk. Many migratory animals travel large geographic distances between their seasonal ranges. Changes in land use and climate that disparately influence such seasonal ranges may alter the ecological basis of migratory behavior, representing an important challenge for, and a powerful lens into, the ecology and conservation of migratory taxa.


Subject(s)
Animal Migration/physiology , Deer/physiology , Altitude , Animals , Ecosystem , Environmental Monitoring , Female , Human Activities , Humans , Male , Population Dynamics , Predatory Behavior , Time Factors , Ursidae , Wolves , Wyoming
5.
Biol Lett ; 8(5): 838-41, 2012 Oct 23.
Article in English | MEDLINE | ID: mdl-22675135

ABSTRACT

Population sizes and movement patterns of ungulate grazers and their predators have fluctuated dramatically over the past few centuries, largely owing to overharvesting, land-use change and historic management. We used δ(13)C and δ(15)N values measured from bone collagen of historic and recent gray wolves and their potential primary prey from Yellowstone National Park to gain insight into the trophic dynamics and nutrient conditions of historic and modern grasslands. The diet of reintroduced wolves closely parallels that of the historic population. We suggest that a significant shift in faunal δ(15)N values over the past century reflects impacts of anthropogenic environmental changes on grassland ecosystems, including grazer-mediated shifts in grassland nitrogen cycle processes.


Subject(s)
Bone and Bones/physiology , Carbon Isotopes/chemistry , Collagen/metabolism , Deer/physiology , Nitrogen Isotopes/chemistry , Ruminants/physiology , Wolves/physiology , Animals , Ecology , Ecosystem , Environment , Mammals/physiology , Nutritional Status , Poaceae , Population Density , Predatory Behavior , Seasons , Soil , Wyoming
6.
Ecol Appl ; 22(8): 2293-307, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23387126

ABSTRACT

Identifying the ecological dynamics underlying human-wildlife conflicts is important for the management and conservation of wildlife populations. In landscapes still occupied by large carnivores, many ungulate prey species migrate seasonally, yet little empirical research has explored the relationship between carnivore distribution and ungulate migration strategy. In this study, we evaluate the influence of elk (Cervus elaphus) distribution and other landscape features on wolf (Canis lupus) habitat use in an area of chronic wolf-livestock conflict in the Greater Yellowstone Ecosystem, USA. Using three years of fine-scale wolf (n = 14) and elk (n = 81) movement data, we compared the seasonal habitat use of wolves in an area dominated by migratory elk with that of wolves in an adjacent area dominated by resident elk. Most migratory elk vacate the associated winter wolf territories each summer via a 40-60 km migration, whereas resident elk remain accessible to wolves year-round. We used a generalized linear model to compare the relative probability of wolf use as a function of GIS-based habitat covariates in the migratory and resident elk areas. Although wolves in both areas used elk-rich habitat all year, elk density in summer had a weaker influence on the habitat use of wolves in the migratory elk area than the resident elk area. Wolves employed a number of alternative strategies to cope with the departure of migratory elk. Wolves in the two areas also differed in their disposition toward roads. In winter, wolves in the migratory elk area used habitat close to roads, while wolves in the resident elk area avoided roads. In summer, wolves in the migratory elk area were indifferent to roads, while wolves in resident elk areas strongly avoided roads, presumably due to the location of dens and summering elk combined with different traffic levels. Study results can help wildlife managers to anticipate the movements and establishment of wolf packs as they expand into areas with migratory or resident prey populations, varying levels of human activity, and front-country rangelands with potential for conflicts with livestock.


Subject(s)
Deer/physiology , Ecosystem , Human Activities , Wolves/physiology , Animals , Conservation of Natural Resources , Demography , Humans , Seasons , Wyoming
SELECTION OF CITATIONS
SEARCH DETAIL
...