Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurosurg ; 126(4): 1253-1262, 2017 Apr.
Article in English | MEDLINE | ID: mdl-27231974

ABSTRACT

OBJECTIVE A better understanding of the effects of chronically delivering compounds to the substantia nigra and nearby areas is important for the development of new therapeutic approaches to treat alpha-synucleinopathies, like Parkinson's disease. Whether chronic intranigral delivery of an infusate could be achieved without causing motor dysfunction or marked pathology remains unclear. The authors evaluated the tolerability of continuously delivering an infusate directly into the rhesus monkey substantia nigra via a programmable pump coupled to a novel intraparenchymal needle-tip catheter surgically implanted using MRI-guided techniques. METHODS The MRI contrast agent gadopentetate dimeglumine (Magnevist, 5 mM) was used to noninvasively evaluate catheter patency and infusion volume associated with 2 flow rates sequentially tested in each of 3 animals: 0.1 µl/min for 14 days into the right substantia nigra and 0.1 µl/min for 7 days plus 0.2 µl/min for an additional 7 days into the left substantia nigra. Flow rate tolerability was assessed via clinical observations and a microscopic examination of the striatum and midbrain regions. RESULTS Evaluation of postsurgical MRI indicated that all 6 catheters remained patent throughout the study and that the volume of distribution achieved in the left midbrain region at a rate of up to 0.2 µl/min (2052 ± 168 mm3) was greater than that achieved in the right midbrain region at a constant rate of 0.1 µl/min (1225 ± 273 mm3) by nearly 2-fold. Both flow rates provided sufficient infusate coverage of the rhesus (and possibly the human) midbrain region. There were no indications of observable deficits in behavior. Histopathological evaluations confirmed that all catheter tips were placed in or near the pars compacta region of the substantia nigra in all animals. There was no evidence of infection at any of the 6 catheter sites. Mild to moderate microglial reactions were observed at most catheter track sites and were comparable between the 2 infusion rates. Finally, there was neither observable decrease of tyrosine hydroxylase staining in the striatum nor detectable necrosis of neurons in the pars compacta region of the substantia nigra in any of the animals. CONCLUSIONS The data from this study support the feasibility of using a pump-and-catheter system for chronic intranigral infusion and lay the foundation for using this approach to treat Parkinson's disease or other related degenerative diseases that would benefit from targeted drug delivery to the substantia nigra or to other brainstem regions.


Subject(s)
Infusion Pumps , Substantia Nigra , Animals , Catheters, Indwelling , Contrast Media , Feasibility Studies , Female , Gadolinium DTPA , Macaca mulatta , Magnetic Resonance Imaging , Models, Animal , Patient Safety , Substantia Nigra/diagnostic imaging , Substantia Nigra/pathology
2.
J Neurosurg ; 123(6): 1569-77, 2015 Dec.
Article in English | MEDLINE | ID: mdl-25932605

ABSTRACT

OBJECT: Assessing the safety and feasibility of chronic delivery of compounds to the brain using convection-enhanced delivery (CED) is important for the further development of this important therapeutic technology. The objective of this study was to follow and model the distribution of a compound delivered by CED into the putamen of rhesus monkeys. METHODS: The authors sequentially implanted catheters into 4 sites spanning the left and right putamen in each of 6 rhesus monkeys. The catheters were connected to implanted pumps, which were programmed to deliver a 5-mM solution of the MRI contrast agent Gd-DTPA at 0.1 µl/minute for 7 days and 0.3 µl/minute for an additional 7 days. The animals were followed for 28 days per implant cycle during which they were periodically examined with MRI. RESULTS: All animals survived the 4 surgeries with no deficits in behavior. Compared with acute infusion, the volume of distribution (Vd) increased 2-fold with 7 days of chronic infusion. Increasing the flow rate 3-fold over the next week increased the Vd an additional 3-fold. Following withdrawal of the compound, the half-life of Gd-DTPA in the brain was estimated as 3.1 days based on first-order pharmacokinetics. Histological assessment of the brain showed minimal tissue damage limited to the insertion site. CONCLUSIONS: These results demonstrate several important features in the development of a chronically implanted pump and catheter system: 1) the ability to place catheters accurately in a predetermined target; 2) the ability to deliver compounds in a chronic fashion to the putamen; and 3) the use of MRI and MR visible tracers to follow the evolution of the infusion volume over time.


Subject(s)
Contrast Media/administration & dosage , Convection , Drug Delivery Systems , Gadolinium DTPA/administration & dosage , Infusion Pumps, Implantable , Putamen/metabolism , Animals , Contrast Media/pharmacokinetics , Female , Gadolinium DTPA/pharmacokinetics , Macaca mulatta , Magnetic Resonance Imaging
3.
J Neurosci Methods ; 227: 29-34, 2014 Apr 30.
Article in English | MEDLINE | ID: mdl-24486877

ABSTRACT

BACKGROUND: Systemic delivery of pharmacologic agents has led to many significant advances in the treatment of neurologic and psychiatric conditions. However, this approach has several limitations, including difficulty penetrating the blood-brain barrier and enzymatic degradation prior to reaching its intended target. Here, we describe the testing of a system allowing intraparenchymal (IPa) infusion of therapeutic agents directly to the appropriate anatomical targets, in a swine model. NEW METHOD: Five male pigs underwent 3.0T magnetic resonance (MR) guided placement of an IPa catheter into the dorso-medial putamen, using a combined system of the Leksell stereotactic arc, a Mayo-developed MRI-compatible pig head frame, and a custom-designed Fred Haer Company (FHC) delivery system. RESULTS: Our results show hemi-lateral coverage of the pig putamen is achievable from a single infusion point and that the volume of the bolus detected in each animal is uniform (1544±420mm(3)). COMPARISON WITH EXISTING METHOD: The IPa infusion system is designed to isolate the intracranial catheter from bodily-induced forces while delivering drugs and molecules into the brain tissue by convection-enhanced delivery, with minimal-to-no catheter track backflow. CONCLUSION: This study presents an innovative IPa drug delivery system, which includes a sophisticated catheter and implantable pump designed to deliver drugs and various molecules in a precise and controlled manner with limited backflow. It also demonstrates the efficacy of the delivery system, which has the potential to radically impact the treatment of a wide range of neurologic conditions. Lastly, the swine model used here has certain advantages for translation into clinical applications.


Subject(s)
Drug Delivery Systems/methods , Functional Laterality , Infusion Pumps, Implantable , Animals , Convection , Drug Delivery Systems/instrumentation , Gadolinium DTPA/metabolism , Imaging, Three-Dimensional , Magnetic Resonance Imaging , Male , Models, Animal , Putamen/drug effects , Putamen/physiology , Swine , Time Factors
4.
PLoS One ; 7(3): e33354, 2012.
Article in English | MEDLINE | ID: mdl-22413020

ABSTRACT

Coral reefs are experiencing unprecedented degradation due to human activities, and protecting specific reef habitats may not stop this decline, because the most serious threats are global (i.e., climate change), not local. However, ex situ preservation practices can provide safeguards for coral reef conservation. Specifically, modern advances in cryobiology and genome banking could secure existing species and genetic diversity until genotypes can be introduced into rehabilitated habitats. We assessed the feasibility of recovering viable sperm and embryonic cells post-thaw from two coral species, Acropora palmata and Fungia scutaria that have diffferent evolutionary histories, ecological niches and reproductive strategies. In vitro fertilization (IVF) of conspecific eggs using fresh (control) spermatozoa revealed high levels of fertilization (>90% in A. palmata; >84% in F. scutaria; P>0.05) that were unaffected by tested sperm concentrations. A solution of 10% dimethyl sulfoxide (DMSO) at cooling rates of 20 to 30°C/min most successfully cryopreserved both A. palmata and F. scutaria spermatozoa and allowed producing developing larvae in vitro. IVF success under these conditions was 65% in A. palmata and 53% in F. scutaria on particular nights; however, on subsequent nights, the same process resulted in little or no IVF success. Thus, the window for optimal freezing of high quality spermatozoa was short (∼5 h for one night each spawning cycle). Additionally, cryopreserved F. scutaria embryonic cells had∼50% post-thaw viability as measured by intact membranes. Thus, despite some differences between species, coral spermatozoa and embryonic cells are viable after low temperature (-196°C) storage, preservation and thawing. Based on these results, we have begun systematically banking coral spermatozoa and embryonic cells on a large-scale as a support approach for preserving existing bio- and genetic diversity found in reef systems.


Subject(s)
Anthozoa/cytology , Cryopreservation/methods , Spermatozoa/cytology , Animals , Caribbean Region , Cell Survival , Fertilization in Vitro , Germ Cells , Male , Pacific Ocean , Sperm Count , Sperm Motility
SELECTION OF CITATIONS
SEARCH DETAIL
...