Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38090853

ABSTRACT

This article investigates the performance of an array of multiple phase-coherent power-combined oscillators (PPOs) in terms of phase modulation (PM) noise and amplitude modulation (AM) noise. The array consists of six individual oscillator modules that generate three distinct frequencies: 10, 100 MHz, and 1 GHz. By meticulously aligning the phases, we observed a notable improvement of approximately 7.8 dB in the white frequency region for the power-combined signal's AM and PM noise. This closely matches the theoretical value of 10log10(k) dB, where k is the total number of oscillators. The enhancement arises from the fact that when multiple sources are combined, the power of each source adds coherently, while the random noise adds noncoherently. Our experiments resulted in single-sideband (SSB) white phase noise levels of -182, -191, and -168 dBc/Hz for 10, 100 MHz, and 1 GHz, respectively. The corresponding white AM noise levels are approximately -191, -194, and -182 dBc/Hz. Notably, these noise levels represent some of the lowest ever reported at these frequencies. However, the AM noise results for frequencies close to the carrier do not achieve the theoretical 7.8-dB improvement due to PM-to-AM conversion caused by imperfect phase alignment of the individual summed signals. Furthermore, we discuss the use of carrier-suppressed noise measurement and propose a novel, straightforward technique for optimizing phase alignment to minimize PM-to-AM and AM-to-PM conversion in phase-coherent oscillator arrays.

2.
Nat Commun ; 12(1): 3981, 2021 Jun 25.
Article in English | MEDLINE | ID: mdl-34172730

ABSTRACT

Light-in-flight sensing has emerged as a promising technique in image reconstruction applications at various wavelengths. We report a microwave imaging system that uses an array of transmitters and a single receiver operating in continuous transmit-receive mode. Captures take a few microseconds and the corresponding images cover a spatial range of tens of square meters with spatial resolution of 0.1 meter. The images are the result of a dot product between a reconstruction matrix and the captured signal with no prior knowledge of the scene. The reconstruction matrix uses an engineered electromagnetic field mask to create unique random time patterns at every point in the scene and correlates it with the captured signal to determine the corresponding voxel value. We report the operation of the system through simulations and experiment in a laboratory scene. We demonstrate through-wall real-time imaging, tracking, and observe second-order images from specular reflections.

3.
Article in English | MEDLINE | ID: mdl-31226073

ABSTRACT

Noncontact thermoacoustic imaging (TAI) has several desirable characteristics for applications such as explosive detection in high-water-content media. In this letter, we report a detection technique using millimeter-wave interferometry based on sensitive phase detection at W -band. The displacement sensitivity of the proposed W -band vibrometer at 95 GHz is of the order of 1 nm. We also analyze the effect of phase noise on the sensitivity of the vibrometer. Unlike laser-based sensors, a W -band sensor has several advantages; it can easily penetrate surface obscurants such as fur or cloth and it does not require a highly reflective surface of the target to detect the thermoacoustic vibrations.

4.
Rev Sci Instrum ; 88(11): 114707, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29195354

ABSTRACT

The cross-spectrum noise measurement technique enables enhanced resolution of spectral measurements. However, it has disadvantages, namely, increased complexity, inability of making real-time measurements, and bias due to the "cross-spectral collapse" (CSC) effect. The CSC can occur when the spectral density of a random process under investigation approaches the thermal noise of the power splitter. This effect can severely bias results due to a differential measurement between the investigated noise and the anti-correlated (phase-inverted) noise of the power splitter. In this paper, we report an accurate measurement of the phase noise of a thermally limited electronic oscillator operating at room temperature (300 K) without significant CSC bias. We mitigated the problem by cooling the power splitter to liquid helium temperature (4 K). We quantify errors of greater than 1 dB that occur when the thermal noise of the oscillator at room temperature is measured with the power splitter at temperatures above 77 K.

5.
Article in English | MEDLINE | ID: mdl-26829788

ABSTRACT

We demonstrate a novel technique for reducing the phase modulation (PM) noise of an oscillator in a steady-state condition as well as under vibration. It utilizes correlation between PM noise and amplitude modulation (AM) noise that can originate from the oscillator's loop components. A control voltage proportional to the correlated AM noise is generated and utilized in a feedforward architecture to correct for the steady state as well as the vibration-induced PM noise. An improvement of almost 10-15 dB in PM noise is observed over one decade of offset frequencies for a 635-MHz quartz-MEMS oscillator. This corresponds to more than a factor of five reductions in vibration sensitivity.

6.
Optica ; 3(4): 441-447, 2016 Apr.
Article in English | MEDLINE | ID: mdl-29607352

ABSTRACT

The ability to distribute the precise time and frequency from an optical clock to remote platforms could enable future precise navigation and sensing systems. Here we demonstrate tight, real-time synchronization of a remote microwave clock to a master optical clock over a turbulent 4-km open air path via optical two-way time-frequency transfer. Once synchronized, the 10-GHz frequency signals generated at each site agree to 10-14 at one second and below 10-17 at 1000 seconds. In addition, the two clock times are synchronized to ±13 fs over an 8-hour period. The ability to phase-synchronize 10-GHz signals across platforms supports future distributed coherent sensing, while the ability to time-synchronize multiple microwave-based clocks to a high-performance master optical clock supports future precision navigation/timing systems.

7.
Article in English | MEDLINE | ID: mdl-24658712

ABSTRACT

We present the design of a novel, ultralow-phase-noise frequency synthesizer implemented with extremely-low-noise regenerative frequency dividers. This synthesizer generates eight outputs, viz. 1.6 GHz, 320 MHz, 160 MHz, 80 MHz, 40 MHz, 20 MHz, 10 MHz and 5 MHz for an 8 GHz input frequency. The residual single-sideband (SSB) phase noises of the synthesizer at 5 and 10 MHz outputs at 1 Hz offset from the carrier are -150 and -145 dBc/Hz, respectively, which are unprecedented phase noise levels. We also report the lowest values of phase noise to date for 5 and 10 MHz RF signals achieved with our synthesizer by dividing an 8 GHz signal generated from an ultra-stable optical-comb-based frequency division. The absolute SSB phase noises achieved for 5 and 10 MHz signals at 1 Hz offset are -150 and -143 dBc/Hz, respectively; at 100 kHz offset, they are -177 and -174 dBc/Hz, respectively. The phase noise of the 5 MHz signal corresponds to a frequency stability of approximately 7.6 × 10(-15) at 1 s averaging time for a measurement bandwidth (BW) of 500 Hz, and the integrated timing jitter over 100 kHz BW is 20 fs.


Subject(s)
Electronics/instrumentation , Micro-Electrical-Mechanical Systems/instrumentation , Optical Devices , Radio Waves , Signal Processing, Computer-Assisted/instrumentation , Telecommunications/instrumentation , Ultrasonography/instrumentation , Equipment Design , Equipment Failure Analysis
8.
Article in English | MEDLINE | ID: mdl-23192826

ABSTRACT

We designed ultra-low-noise regenerative divide-by- 2 circuits that operate at input frequencies of 10, 20, and 40 MHz. We achieved output-referred single-sideband residual phase noise equal to -164 dBc/Hz at 10 Hz offset and estimated residual Allan deviation, σ(y)(τ) less than 3 × 10(-15)τ(-1) for a single divider, which is, to our knowledge, the lowest noise of any divider ever reported at these frequencies. To measure such a low noise, we also built a cross-spectrum measurement system that has a noise floor of -175 dBc/Hz at 10 Hz offset from the carrier frequency. The low noise of the divider and the measurement system are achieved by using custom-built mixers/phase detectors that use 2N2222A bipolar junction transistors (BJTs) in a conventional double-balanced diode ring.

9.
Article in English | MEDLINE | ID: mdl-19942493

ABSTRACT

The performance of microwave components is sensitive to vibrations to some extent. Aside from the resonator, microwave cables, and connectors, bandpass filters, mechanical phase shifters, and some nonlinear components are the most sensitive. The local oscillator is one of the prime performance-limiting components in microwave systems ranging from simple RF receivers to advanced radars. The increasing present and future demand for low acceleration sensitive oscillators, approaching 10(-13)/g, requires a reexamination of sensitivities of basic nonoscillatory building-block components under vibration. The purpose of this paper is to study the phase-modulation (PM) noise performance of an assortment of oscillatory and nonoscillatory microwave components under vibration at 10 GHz. We point out some challenges and provide suggestions for the accurate measurement of vibration sensitivity of these components. We also study the effect of vibration on the amplitude-modulation (AM) noise.

SELECTION OF CITATIONS
SEARCH DETAIL
...