Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Oncotarget ; 14: 133-145, 2023 02 11.
Article in English | MEDLINE | ID: mdl-36780330

ABSTRACT

FGFR3-TACC3 represents an oncogenic fusion protein frequently identified in glioblastoma, lung cancer, bladder cancer, oral cancer, head and neck squamous cell carcinoma, gallbladder cancer, and cervical cancer. Various exon breakpoints of FGFR3-TACC3 have been identified in cancers; these were analyzed to determine the minimum contribution of TACC3 for activation of the FGFR3-TACC3 fusion protein. While TACC3 exons 11 and 12 are dispensable for activity, our results show that FGFR3-TACC3 requires exons 13-16 for biological activity. A detailed analysis of exon 13, which consists of 8 heptads forming a coiled coil, further defined the minimal region for biological activity as consisting of 5 heptads from exon 13, in addition to exons 14-16. These conclusions were supported by transformation assays of biological activity, examination of MAPK pathway activation, analysis of disulfide-bonded FGFR3-TACC3, and by examination of the Endoglycosidase H-resistant portion of FGFR3-TACC3. These results demonstrate that clinically identified FGFR3-TACC3 fusion proteins differ in their biological activity, depending upon the specific breakpoint. This study further suggests the TACC3 dimerization domain of FGFR3-TACC3 as a novel target in treating FGFR translocation driven cancers.


Subject(s)
Microtubule-Associated Proteins , Neoplasms , Oncogene Proteins, Fusion , Receptor, Fibroblast Growth Factor, Type 3 , Humans , Cell Line, Tumor , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Receptor, Fibroblast Growth Factor, Type 3/genetics , Receptor, Fibroblast Growth Factor, Type 3/metabolism , Neoplasms/genetics
2.
Transl Oncol ; 13(12): 100853, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32854034

ABSTRACT

AIM OF STUDY: Chromosomal translocations such as t(10;12)(q26,q12) are associated with intrahepatic cholangiocarcinoma, a universally fatal category of liver cancer. This translocation creates the oncogenic fusion protein of Fibroblast Growth Factor Receptor 2 joined to Periphilin 1. The aims of this study were to identify significant features required for biological activation, analyze the activation of downstream signaling pathways, and examine the efficacy of the TKIs BGJ398 and TAS-120, and of the MEK inhibitor Trametinib. METHODS: These studies examined FGFR2-PPHLN1 proteins containing a kinase-dead, kinase-activated, or WT kinase domain in comparison with analogous FGFR2 proteins. Biological activity was assayed using soft agar colony formation in epithelial RIE-1 cells and focus assays in NIH3T3 cells. The MAPK/ERK, JAK/STAT3 and PI3K/AKT signaling pathways were examined for activation. Membrane association was analyzed by indirect immunofluorescence comparing proteins altered by deletion of the signal peptide, or by addition of a myristylation signal. RESULTS: Biological activity of FGFR2-PPHLN1 required an active FGFR2-derived tyrosine kinase domain, and a dimerization domain contributed by PPHLN1. Strong activation of canonical MAPK/ERK, JAK/STAT3 and PI3K/AKT signaling pathways was observed. The efficacy of the tyrosine kinase inhibitors BGJ398 and TAS-120 was examined individually and combinatorially with the MEK inhibitor Trametinib; heterogeneous responses were observed in a mutation-specific manner. A requirement for membrane localization of the fusion protein was also demonstrated. CONCLUDING STATEMENT: Our study collectively demonstrates the potent transforming potential of FGFR2-PPHLN1 in driving cellular proliferation. We discuss the importance of sequencing-based, mutation-specific personalized therapeutics in treating FGFR2 fusion-positive intrahepatic cholangiocarcinoma.

3.
Haematologica ; 105(5): 1262-1273, 2020 05.
Article in English | MEDLINE | ID: mdl-31439673

ABSTRACT

Mutation and translocation of fibroblast growth factor receptors often lead to aberrant signaling and cancer. This work focuses on the t(8;22)(p11;q11) chromosomal translocation which creates the breakpoint cluster region (BCR) fibroblast growth factor receptor1 (FGFR1) (BCR-FGFR1) fusion protein. This fusion occurs in stem cell leukemia/lymphoma, which can progress to atypical chronic myeloid leukemia, acute myeloid leukemia, or B-cell lymphoma. This work focuses on the biochemical characterization of BCR-FGFR1 and identification of novel therapeutic targets. The tyrosine kinase activity of FGFR1 is required for biological activity as shown using transformation assays, interleukin-3 independent cell proliferation, and liquid chromatography/mass spectroscopy analyses. Furthermore, BCR contributes a coiled-coil oligomerization domain, also essential for oncogenic transformation by BCR-FGFR1. The importance of salt bridge formation within the coiled-coil domain is demonstrated, as disruption of three salt bridges abrogates cellular transforming ability. Lastly, BCR-FGFR1 acts as a client of the chaperonin heat shock protein 90 (Hsp90), suggesting that BCR-FGFR1 relies on Hsp90 complex to evade proteasomal degradation. Transformed cells expressing BCR-FGFR1 are sensitive to the Hsp90 inhibitor Ganetespib, and also respond to combined treatment with Ganetespib plus the FGFR inhibitor BGJ398. Collectively, these data suggest novel therapeutic approaches for future stem cell leukemia/lymphoma treatment: inhibition of BCR oligomerization by disruption of required salt bridges; and inhibition of the chaperonin Hsp90 complex.


Subject(s)
HSP90 Heat-Shock Proteins/metabolism , Oncogene Proteins, Fusion , Proto-Oncogene Proteins c-bcr , Receptor, Fibroblast Growth Factor, Type 1 , Chaperonins , HSP90 Heat-Shock Proteins/genetics , Humans , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Proto-Oncogene Proteins c-bcr/genetics , Proto-Oncogene Proteins c-bcr/metabolism , Receptor, Fibroblast Growth Factor, Type 1/genetics , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Signal Transduction , Translocation, Genetic
4.
PLoS One ; 13(10): e0206014, 2018.
Article in English | MEDLINE | ID: mdl-30335863

ABSTRACT

Mutations at position K171 in the kinase activation loop of Inhibitor of κB kinase beta (IKKß) occur in multiple myeloma, spleen marginal zone lymphoma and mantle cell lymphoma. Previously, we demonstrated that these result in constitutive kinase activation and stimulate Signal Transducer and Activator of Transcription 3 (STAT3). This work also identified K147 as a site of K63-linked regulatory ubiquitination required for activation of signaling pathways. We now present a more detailed analysis of ubiquitination sites together with a comprehensive examination of the signaling pathways activated by IKKß K171E mutants. Downstream activation of STAT3 is dependent upon the activity of: UBE2N, the E2 ubiquitin ligase involved in K63-linked ubiquitination; TAK1 (MAP3K7), or TGFß Activated Kinase, which forms a complex required for NFκB activation; JAK kinases, involved proximally in the phosphorylation of STAT transcription factors in response to inflammatory cytokines; and gp130, or IL-6 Receptor Subunit Beta which, upon binding IL-6 or other specific cytokines, undergoes homodimerization leading to activation of associated JAKs, resulting in STAT activation. We further demonstrate, using an IL-6-responsive cell line, that IKKß K171E mutants stimulate the release of IL-6 activity into conditioned media. These results show that IKKß K171E mutants trigger an autocrine loop in which IL-6 is secreted and binds to the IL-6 receptor complex gp130, resulting in JAK activation. Lastly, by examining the differential abundance of proteins associated with K63-only-ubiquitinated IKKß K171E, proteomic analysis demonstrates the global activation of proliferative responses. As cancers harboring K171-mutated IKKß are likely to also exhibit activated STAT3 and p44/42 MAPK (Erk1/2), this suggests the possibility of using MAPK (Erk1/2) and JAK inhibitors, or specific ubiquitination inhibitors. K63-linked ubiquitination occurs in other kinases at sites homologous to K147 in IKKß, including K578 in BRAF V600E, which serves as an oncogenic driver in melanoma and other cancers.


Subject(s)
I-kappa B Kinase/genetics , Lysine/metabolism , Mutation/genetics , Oncogenes , Ubiquitination , Animals , Autocrine Communication , Cell Proliferation , Cytokine Receptor gp130/metabolism , HEK293 Cells , Humans , I-kappa B Kinase/chemistry , Janus Kinases/metabolism , Mice , Models, Biological , Mutant Proteins/metabolism , Phosphorylation , Protein Interaction Maps , Proteomics , STAT3 Transcription Factor/metabolism , Signal Transduction
5.
Oncotarget ; 9(76): 34306-34319, 2018 Sep 28.
Article in English | MEDLINE | ID: mdl-30344944

ABSTRACT

Fusion proteins resulting from chromosomal translocations have been identified as oncogenic drivers in many cancers, allowing them to serve as potential drug targets in clinical practice. The genes encoding FGFRs, Fibroblast Growth Factor Receptors, are commonly involved in such translocations, with the FGFR3-TACC3 fusion protein frequently identified in many cancers, including glioblastoma, cervical cancer, bladder cancer, nasopharyngeal carcinoma, and lung adenocarcinoma among others. FGFR3-TACC3 retains the entire extracellular domain and most of the kinase domain of FGFR3, with its C-terminal domain fused to TACC3. We examine here the effects of targeting FGFR3-TACC3 to different subcellular localizations by appending either a nuclear localization signal (NLS) or a myristylation signal, or by deletion of the normal signal sequence. We demonstrate that the oncogenic effects of FGFR3-TACC3 require either entrance to the secretory pathway or plasma membrane localization, leading to overactivation of canonical MAPK/ERK pathways. We also examined the effects of different translocation breakpoints in FGFR3-TACC3, comparing fusion at TACC3 exon 11 with fusion at exon 8. Transformation resulting from FGFR3-TACC3 was not affected by association with the canonical TACC3-interacting proteins Aurora-A, clathrin, and ch-TOG. We have shown that kinase inhibitors for MEK (Trametinib) and FGFR (BGJ398) are effective in blocking cell transformation and MAPK pathway upregulation. The development of personalized medicines will be essential in treating patients who harbor oncogenic drivers such as FGFR3-TACC3.

6.
Trends Mol Med ; 23(1): 59-79, 2017 01.
Article in English | MEDLINE | ID: mdl-27988109

ABSTRACT

Receptor tyrosine kinases (RTKs) activate various signaling pathways and regulate cellular proliferation, survival, migration, and angiogenesis. Malignant neoplasms often circumvent or subjugate these pathways by promoting RTK overactivation through mutation or chromosomal translocation. RTK translocations create a fusion protein containing a dimerizing partner fused to an RTK kinase domain, resulting in constitutive kinase domain activation, altered RTK cellular localization, upregulation of downstream signaling, and novel pathway activation. While RTK translocations in hematological malignancies are relatively rare, clinical evidence suggests that patients with these genetic abnormalities benefit from RTK-targeted inhibitors. Here, we present a timely review of an exciting field by examining RTK chromosomal translocations in hematological cancers, such as Anaplastic Lymphoma Kinase (ALK), Fibroblast Growth Factor Receptor (FGFR), Platelet-Derived Growth Factor Receptor (PDGFR), REarranged during Transfection (RET), Colony Stimulating Factor 1 Receptor (CSF1R), and Neurotrophic Tyrosine Kinase Receptor Type 3 (NTRK3) fusions, and discuss current therapeutic options.


Subject(s)
Hematologic Neoplasms/genetics , Oncogene Proteins, Fusion/genetics , Receptor Protein-Tyrosine Kinases/genetics , Translocation, Genetic , Anaplastic Lymphoma Kinase , Animals , Hematologic Neoplasms/drug therapy , Hematologic Neoplasms/metabolism , Humans , Oncogene Proteins, Fusion/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Receptor Protein-Tyrosine Kinases/metabolism , Receptors, Fibroblast Growth Factor/genetics , Receptors, Fibroblast Growth Factor/metabolism , Receptors, Platelet-Derived Growth Factor/genetics , Receptors, Platelet-Derived Growth Factor/metabolism , Signal Transduction/drug effects
7.
Mol Cancer Res ; 14(5): 458-69, 2016 05.
Article in English | MEDLINE | ID: mdl-26869289

ABSTRACT

UNLABELLED: Fibroblast growth factor receptors (FGFR) are critical for cell proliferation and differentiation. Mutation and/or translocation of FGFRs lead to aberrant signaling that often results in developmental syndromes or cancer growth. As sequencing of human tumors becomes more frequent, so does the detection of FGFR translocations and fusion proteins. The research conducted in this article examines a frequently identified fusion protein between FGFR3 and transforming acidic coiled-coil containing protein 3 (TACC3), frequently identified in glioblastoma, lung cancer, bladder cancer, oral cancer, head and neck squamous cell carcinoma, gallbladder cancer, and cervical cancer. Using titanium dioxide-based phosphopeptide enrichment (TiO2)-liquid chromatography (LC)-high mass accuracy tandem mass spectrometry (MS/MS), it was demonstrated that the fused coiled-coil TACC3 domain results in constitutive phosphorylation of key activating FGFR3 tyrosine residues. The presence of the TACC coiled-coil domain leads to increased and altered levels of FGFR3 activation, fusion protein phosphorylation, MAPK pathway activation, nuclear localization, cellular transformation, and IL3-independent proliferation. Introduction of K508R FGFR3 kinase-dead mutation abrogates these effects, except for nuclear localization which is due solely to the TACC3 domain. IMPLICATIONS: These results demonstrate that FGFR3 kinase activity is essential for the oncogenic effects of the FGFR3-TACC3 fusion protein and could serve as a therapeutic target, but that phosphorylated tyrosine residues within the TACC3-derived portion are not critical for activity. Mol Cancer Res; 14(5); 458-69. ©2016 AACR.


Subject(s)
Microtubule-Associated Proteins/metabolism , Neoplasms/metabolism , Oncogene Proteins, Fusion/metabolism , Proteomics/methods , Receptor, Fibroblast Growth Factor, Type 3/metabolism , Tyrosine/metabolism , Animals , Cell Line, Tumor , Cell Proliferation , Chromatography, Liquid , Gene Expression Regulation, Neoplastic , HEK293 Cells , Humans , MAP Kinase Signaling System , Mice , Microtubule-Associated Proteins/chemistry , Microtubule-Associated Proteins/genetics , NIH 3T3 Cells , Neoplasms/genetics , Oncogene Proteins, Fusion/genetics , Phosphorylation , Protein Domains , Receptor, Fibroblast Growth Factor, Type 3/genetics , Tandem Mass Spectrometry
8.
Cytokine Growth Factor Rev ; 26(4): 425-49, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26003532

ABSTRACT

The four receptor tyrosine kinases (RTKs) within the family of Fibroblast Growth Factor Receptors (FGFRs) are critical for normal development but also play an enormous role in oncogenesis. Mutations and/or abnormal expression often lead to constitutive dimerization and kinase activation of FGFRs, and represent the primary mechanism for aberrant signaling. Sequencing of human tumors has revealed a plethora of somatic mutations in FGFRs that are frequently identical to germline mutations in developmental syndromes, and has also identified novel FGFR fusion proteins arising from chromosomal rearrangements that contribute to malignancy. This review details approximately 200 specific point mutations in FGFRs and 40 different fusion proteins created by translocations involving FGFRs that have been identified in human cancer. This review discusses the effects of these genetic alterations on downstream signaling cascades, and the challenge of drug resistance in cancer treatment with antagonists of FGFRs.


Subject(s)
Mutation , Neoplasms/genetics , Receptors, Fibroblast Growth Factor/genetics , Translocation, Genetic , Humans , Neoplasms/metabolism , Signal Transduction
9.
Cell Cycle ; 13(24): 3964-76, 2014.
Article in English | MEDLINE | ID: mdl-25486864

ABSTRACT

NFκB signaling plays a significant role in human disease, including breast and ovarian carcinoma, insulin resistance, embryonic lethality and liver degeneration, rheumatoid arthritis, aging and Multiple Myeloma (MM). Inhibitor of κB (IκB) kinase ß (IKKß) regulates canonical Nuclear Factor κB (NFκB) signaling in response to inflammation and cellular stresses. NFκB activation requires Lys63-linked (K63-linked) ubiquitination of upstream proteins such as NEMO or TAK1, forming molecular complexes with membrane-bound receptors. We demonstrate that IKKß itself undergoes K63-linked ubiquitination. Mutations in IKKß at Lys171, identified in Multiple Myeloma and other cancers, lead to a dramatic increase in kinase activation and K63-linked ubiquitination. These mutations also result in persistent activation of STAT3 signaling. Liquid chromatography (LC)-high mass accuracy tandem mass spectrometry (MS/MS) analysis identified Lys147, Lys418, Lys555 and Lys703 as predominant ubiquitination sites in IKKß. Specific inhibition of the UBC13-UEV1A complex responsible for K63-linked ubiquitination establishes Lys147 as the predominant site of K63-ubiquitin conjugation and responsible for STAT3 activation. Thus, IKKß activation leads to ubiquitination within the kinase domain and assemblage of a K63-ubiquitin conjugated signaling platform. These results are discussed with respect to the importance of upregulated NFκB signaling known to occur frequently in MM and other cancers.


Subject(s)
I-kappa B Kinase/metabolism , Lysine/metabolism , STAT3 Transcription Factor/metabolism , Amino Acid Sequence , Chromatography, High Pressure Liquid , HEK293 Cells , Humans , I-kappa B Kinase/genetics , Molecular Sequence Data , Multiple Myeloma/metabolism , Multiple Myeloma/pathology , Mutation , NF-kappa B/metabolism , Peptides/analysis , Phosphorylation , Protein Binding , Signal Transduction , Tandem Mass Spectrometry , Transcription Factors/metabolism , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitination
SELECTION OF CITATIONS
SEARCH DETAIL
...