Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 126
Filter
1.
Am J Sports Med ; 52(8): 2110-2118, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38857057

ABSTRACT

BACKGROUND: A sport-related concussion (SRC) is a common injury that affects multiple clinical domains such as cognition, balance, and nonspecific neurobehavioral symptoms. Although multidimensional clinical assessments of concussion are widely accepted, there remain limited empirical data on the nature and clinical utility of distinct clinical profiles identified by multimodal assessments. PURPOSE: Our objectives were to (1) identify distinct clinical profiles discernible from acute postinjury scores on the Sport Concussion Assessment Tool (SCAT), composed of a symptom checklist, a cognitive assessment (Standardized Assessment of Concussion), and a balance assessment (Balance Error Scoring System), and (2) evaluate the clinical utility of the identified profiles by examining their association with injury characteristics, neuropsychological outcomes, and clinical management-related outcomes. STUDY DESIGN: Cohort study (Prognosis); Level of evidence, 2. METHODS: Up to 7 latent profiles were modeled for 1885 collegiate athletes and/or military cadets who completed the SCAT at 0 to 12 hours after an injury. Chi-square tests and general linear models were used to compare identified profiles on outcomes at 12 to 72 hours after the injury. Kaplan-Meier analysis was used to investigate associations between clinical profiles and time to return to being asymptomatic and to return to play. RESULTS: There were 5 latent profiles retained: low impairment (65.8%), high cognitive impairment (5.4%), high balance impairment (5.8%), high symptom severity (16.4%), and global impairment (6.5%). The latent profile predicted outcomes at 12 to 72 hours in expectable ways (eg, the high balance impairment profile demonstrated worse balance at 12 to 72 hours after the injury). Time to return to being asymptomatic and to return to play were different across profiles, with the high symptom severity and global impairment profiles experiencing the longest recovery and the high balance impairment profile experiencing an intermediate-length recovery (vs low impairment profile). CONCLUSION: An SRC is a heterogeneous injury that presents in varying ways clinically in the acute injury period and results in different recovery patterns. These data support the clinical prognostic value of diverse profiles of impairment across symptom, cognitive, and balance domains. By identifying distinct profiles of an SRC and connecting them to differing outcomes, the findings support more evidence-based use of accepted multimodal clinical assessment strategies for SRCs.


Subject(s)
Athletic Injuries , Brain Concussion , Cognition , Postural Balance , Humans , Brain Concussion/diagnosis , Male , Female , Young Adult , Adolescent , Return to Sport , Neuropsychological Tests , Cohort Studies , Military Personnel/psychology , Adult
2.
Am J Sports Med ; 52(7): 1845-1854, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38742422

ABSTRACT

BACKGROUND: Neck pain in a concussion population is an emerging area of study that has been shown to have a negative influence on recovery. This effect has not yet been studied in collegiate athletes. HYPOTHESIS: New or worsened neck pain is common after a concussion (>30%), negatively influences recovery, and is associated with patient sex and level of contact in sport. STUDY DESIGN: Cohort study; Level of evidence, 2. METHODS: Varsity-level athletes from 29 National Collegiate Athletic Association member institutions as well as nonvarsity sport athletes at military service academies were eligible for enrollment. Participants completed a preseason baseline assessment and follow-up assessments at 6 and 24 to 48 hours after a concussion, when they were symptom-free, and when they returned to unrestricted play. Data collection occurred between January 2014 and September 2018. RESULTS: A total of 2163 injuries were studied. New or worsened neck pain was reported with 47.0% of injuries. New or worsened neck pain was associated with patient sex (higher in female athletes), an altered mental status after the injury, the mechanism of injury, and what the athlete collided with. The presence of new/worsened neck pain was associated with delayed recovery. Those with new or worsened neck pain had 11.1 days of symptoms versus 8.8 days in those without (P < .001). They were also less likely to have a resolution of self-reported symptoms in ≤7 days (P < .001). However, the mean duration of the return-to-play protocol was not significantly different for those with new or worsened neck pain (7.5 ± 7.7 days) than those without (7.4 ± 8.3 days) (P = .592). CONCLUSION: This novel study shows that neck pain was common in collegiate athletes sustaining a concussion, was influenced by many factors, and negatively affected recovery.


Subject(s)
Athletic Injuries , Brain Concussion , Neck Pain , Humans , Male , Female , Neck Pain/etiology , Neck Pain/epidemiology , Brain Concussion/complications , Brain Concussion/epidemiology , Athletic Injuries/epidemiology , Young Adult , Prevalence , Athletes/statistics & numerical data , Universities , Adolescent , Return to Sport , Cohort Studies , Sex Factors
3.
PM R ; 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38411367

ABSTRACT

BACKGROUND: The Buffalo Concussion Treadmill Test (BCTT) is used to establish exercise tolerance for rehabilitation and identify injury subtypes for youth athletes after mild traumatic brain injury (mTBI). Its utility in adult community members is unknown. OBJECTIVE: Primary: To describe how adults with and without mTBI tolerate the BCTT. Secondary: To explore relationships between baseline factors, mTBI-related symptoms, and BCTT duration. DESIGN: Prospective, observational, longitudinal. SETTING: Academic medical center. PARTICIPANTS: Thirty-seven adults treated in a level 1 trauma center emergency department with mTBI; 24 uninjured controls (UC). INTERVENTIONS: N/A. MAIN MEASURES: Participants completed two visits 3 weeks apart (1 week and 1 month after mTBI) including a 15-minute BCTT, the Rivermead Post Concussion Symptoms Questionnaire (RPQ), and preinjury International Physical Activity Questionnaire. Analyses characterized BCTT response and associations between baseline factors, RPQ scores, and BCTT duration. RESULTS: Persons with mTBI discontinued earlier than UC at 1-week postinjury using standard discontinuation criteria for exercise intolerance. The percentage of mTBI participants with signs of possible mTBI-related intolerance was 55.6% at 1 week (36.1% for mTBI-related symptom exacerbation, 19.4% for exertion/fatigue before reaching 85% of one's age-predicted maximum heart rate [HR]) and 48.0% at 1 month (40.0% mTBI-related symptom exacerbation, 8.0% exertion without reaching the target HR). Thirty percent of UCs completed the BCTT at both assessments. UCs met discontinuation criteria for increased nonspecific symptoms (eg, pain/general discomfort and increased Visual Analog Scale ratings; 39-61%) and physical exertion (9-26%). Shorter duration was associated with higher body mass index (r = -0.42 - -0.45), shorter height (r = 0.22-0.29), female gender (r = -0.26 - -0.27), and greater RPQ symptoms (r = -0.28 - -0.47). CONCLUSION: The BCTT exacerbates mTBI-related symptoms in adult community members. Participant characteristics and noninjury factors influence performance. The findings imply the BCTT could be useful in clinical assessments of adults with mTBI. Interpretation should account for the unique characteristics of nonathletes.

4.
Am J Phys Med Rehabil ; 103(7): 588-594, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38206608

ABSTRACT

PURPOSE: Assessments of oculomotor, balance, and exercise function detect different responses to mild traumatic brain injury in sports-related mild traumatic brain injury. These assessments are understudied in the adult community mild traumatic brain injury population. We evaluated level 1 trauma center patients with nonsports-related mild traumatic brain injury on oculomotor functioning (near point of convergence and accommodation), balance (Balance Error Scoring System), and exercise tolerance (Buffalo Concussion Treadmill Test). METHODS: A prospective, cohort study of adults with mild traumatic brain injury ( n = 36) were assessed at 1 wk and 1-mo post-mild traumatic brain injury ( n = 26) using near point of convergence, near point of accommodation, Balance Error Scoring System, Buffalo Concussion Treadmill Test, and the Rivermead Post Concussion Symptoms Questionnaire. Prevalence of test impairment and association between performance and mild traumatic brain injury-related symptom burden (Rivermead Post Concussion Symptoms Questionnaire scores) were characterized. RESULTS: Participants demonstrated varying levels of impairment (e.g., 33.3% oculomotor, 44.1% balance, and 55.6% exercise impairment at 1 wk). Participants displayed diverse impairment profiles across assessments. We observed medium-to-large correlations between poorer near point of convergence and Buffalo Concussion Treadmill Test performance and greater mild traumatic brain injury symptom burden. CONCLUSIONS: Clinical examinations of oculomotor function, balance, and exercise adopted from sports-related concussion assessments detect impairment in adult community members with mild traumatic brain injury. While findings warrant larger-scale replication, they imply that incorporating these simple, structured examinations into the assessment of mild traumatic brain injury may facilitate more personalized management strategies.


Subject(s)
Brain Concussion , Exercise Test , Postural Balance , Humans , Male , Female , Postural Balance/physiology , Adult , Brain Concussion/physiopathology , Brain Concussion/diagnosis , Prospective Studies , Exercise Test/methods , Middle Aged , Young Adult , Surveys and Questionnaires
5.
JAMA Surg ; 159(3): 248-259, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38091011

ABSTRACT

Importance: Traumatic brain injury (TBI) is associated with persistent functional and cognitive deficits, which may be susceptible to secondary insults. The implications of exposure to surgery and anesthesia after TBI warrant investigation, given that surgery has been associated with neurocognitive disorders. Objective: To examine whether exposure to extracranial (EC) surgery and anesthesia is related to worse functional and cognitive outcomes after TBI. Design, Setting, and Participants: This study was a retrospective, secondary analysis of data from the Transforming Research and Clinical Knowledge in Traumatic Brain Injury (TRACK-TBI) study, a prospective cohort study that assessed longitudinal outcomes of participants enrolled at 18 level I US trauma centers between February 1, 2014, and August 31, 2018. Participants were 17 years or older, presented within 24 hours of trauma, were admitted to an inpatient unit from the emergency department, had known Glasgow Coma Scale (GCS) and head computed tomography (CT) status, and did not undergo cranial surgery. This analysis was conducted between January 2, 2020, and August 8, 2023. Exposure: Participants who underwent EC surgery during the index admission were compared with participants with no surgery in groups with a peripheral orthopedic injury or a TBI and were classified as having uncomplicated mild TBI (GCS score of 13-15 and negative CT results [CT- mTBI]), complicated mild TBI (GCS score of 13-15 and positive CT results [CT+ mTBI]), or moderate to severe TBI (GCS score of 3-12 [m/sTBI]). Main Outcomes and Measures: The primary outcomes were functional limitations quantified by the Glasgow Outcome Scale-Extended for all injuries (GOSE-ALL) and brain injury (GOSE-TBI) and neurocognitive outcomes at 2 weeks and 6 months after injury. Results: A total of 1835 participants (mean [SD] age, 42.2 [17.8] years; 1279 [70%] male; 299 Black, 1412 White, and 96 other) were analyzed, including 1349 nonsurgical participants and 486 participants undergoing EC surgery. The participants undergoing EC surgery across all TBI severities had significantly worse GOSE-ALL scores at 2 weeks and 6 months compared with their nonsurgical counterparts. At 6 months after injury, m/sTBI and CT+ mTBI participants who underwent EC surgery had significantly worse GOSE-TBI scores (B = -1.11 [95% CI, -1.53 to -0.68] in participants with m/sTBI and -0.39 [95% CI, -0.77 to -0.01] in participants with CT+ mTBI) and performed worse on the Trail Making Test Part B (B = 30.1 [95% CI, 11.9-48.2] in participants with m/sTBI and 26.3 [95% CI, 11.3-41.2] in participants with CT+ mTBI). Conclusions and Relevance: This study found that exposure to EC surgery and anesthesia was associated with adverse functional outcomes and impaired executive function after TBI. This unfavorable association warrants further investigation of the potential mechanisms and clinical implications that could inform decisions regarding the timing of surgical interventions in patients after TBI.


Subject(s)
Anesthesia , Brain Injuries, Traumatic , Brain Injuries , Humans , Male , Adult , Female , Prospective Studies , Retrospective Studies
6.
Sci Rep ; 13(1): 21200, 2023 12 01.
Article in English | MEDLINE | ID: mdl-38040784

ABSTRACT

Traumatic brain injury (TBI) affects how the brain functions in the short and long term. Resulting patient outcomes across physical, cognitive, and psychological domains are complex and often difficult to predict. Major challenges to developing personalized treatment for TBI include distilling large quantities of complex data and increasing the precision with which patient outcome prediction (prognoses) can be rendered. We developed and applied interpretable machine learning methods to TBI patient data. We show that complex data describing TBI patients' intake characteristics and outcome phenotypes can be distilled to smaller sets of clinically interpretable latent factors. We demonstrate that 19 clusters of TBI outcomes can be predicted from intake data, a ~ 6× improvement in precision over clinical standards. Finally, we show that 36% of the outcome variance across patients can be predicted. These results demonstrate the importance of interpretable machine learning applied to deeply characterized patients for data-driven distillation and precision prognosis.


Subject(s)
Brain Injuries, Traumatic , Distillation , Humans , Brain Injuries, Traumatic/diagnosis , Brain Injuries, Traumatic/therapy , Prognosis , Machine Learning , Phenotype
7.
JAMA Netw Open ; 6(12): e2349118, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38147333

ABSTRACT

Importance: Cognitive dysfunction is common after traumatic brain injury (TBI), with a well-established dose-response relationship between TBI severity and likelihood or magnitude of persistent cognitive impairment. However, patterns of cognitive dysfunction in the long-term (eg, 6-month) recovery period are less well known. Objective: To characterize the prevalence of cognitive dysfunction within and across cognitive domains (processing speed, memory, and executive functioning) 6 months after injury in patients with TBI seen at level I trauma centers. Design, Setting, and Participants: This prospective longitudinal cohort study used data from Transforming Research and Clinical Knowledge in TBI (TRACK-TBI) and included patients aged 17 years or older presenting at 18 US level I trauma center emergency departments or inpatient units within 24 hours of head injury, control individuals with orthopedic injury recruited from the same centers, and uninjured friend and family controls. Participants were enrolled between March 2, 2014, and July 27, 2018. Data were analyzed from March 5, 2020, through October 3, 2023. Exposures: Traumatic brain injury (Glasgow Coma Scale score of 3-15) or orthopedic injury. Main Outcomes and Measures: Performance on standard neuropsychological tests, including premorbid cognitive ability (National Institutes of Health Toolbox Picture Vocabulary Test), verbal memory (Rey Auditory Verbal Learning Test), processing speed (Wechsler Adult Intelligence Scale [4th edition] Processing Speed Index), and executive functioning (Trail Making Test). Results: The sample included 1057 persons with TBI (mean [SD] age, 39.3 [16.4] years; 705 [67%] male) and 327 controls without TBI (mean [SD] age, 38.4 [15.1] years; 222 [68%] male). Most persons with TBI demonstrated performance within 1.5 SDs or better of the control group (49.3% [95% CI, 39.5%-59.2%] to 67.5% [95% CI, 63.7%-71.2%] showed no evidence of impairment). Similarly, 64.4% (95% CI, 54.5%-73.4%) to 78.8% (95% CI, 75.4%-81.9%) of participants demonstrated no evidence of cognitive decline (defined as performance within 1.5 SDs of estimated premorbid ability). For individuals with evidence of either cognitive impairment or decline, diverse profiles of impairment across memory, speed, and executive functioning domains were observed (ie, the prevalence was >0 in each of the 7 combinations of impairment across these 3 cognitive domains for most TBI subgroups). Conclusions and Relevance: In this cohort study of patients seen at level I trauma centers 6 months after TBI, many patients with TBI demonstrated no cognitive impairment. Impairment was more prevalent in persons with more severe TBI and manifested in variable ways across individuals. The findings may guide future research and treatment recommendations.


Subject(s)
Brain Injuries, Traumatic , United States , Adult , Humans , Male , Female , Cohort Studies , Longitudinal Studies , Prospective Studies , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/epidemiology , Cognition , Inpatients
8.
Front Neurol ; 14: 1308540, 2023.
Article in English | MEDLINE | ID: mdl-38148980

ABSTRACT

Introduction: Mild traumatic brain injury (mTBI) is a heterogenous injury which can be difficult to characterize and manage. Using cross-sectional network analysis (NA) to conceptualize mTBI symptoms offers an innovative solution to identify how mTBI symptoms relate to each other. The centrality hypothesis of network theory posits that certain symptoms in a network are more relevant (central) or have above average influence over the rest of the network. However, no studies have used NA to characterize the interrelationships between symptoms in a cohort of patients who presented with mTBI to a U.S. Level 1 trauma center emergency department and how subacute central symptoms relate to long-term outcomes. Methods: Patients with mTBI (Glasgow Coma Scale = 13-15) evaluated across 18 U.S. Level 1 trauma centers from 2013 to 2019 completed the Rivermead Post-Concussion Symptoms Questionnaire (RPQ) at 2 weeks (W2) post-injury (n = 1,593) and at 3 months (M3), 6 months (M6), and 12 months (M12) post-injury. Network maps were developed from RPQ subscale scores at each timepoint. RPQ scores at W2 were associated with M6 and M12 functional and quality of life outcomes. Results: Network structure did not differ across timepoints, indicating no difference in symptoms/factors influence on the overall symptom network across time. The cognitive factor had the highest expected influence at W2 (1.761), M3 (1.245), and M6 (1.349). Fatigue had the highest expected influence at M12 (1.275). The emotional factor was the only other node with expected influence >1 at any timepoint, indicating disproportionate influence of emotional symptoms on overall symptom burden (M3 = 1.011; M6 = 1.076). Discussion: Several symptom factors at 2-weeks post-injury were more strongly associated with incomplete recovery and/or poorer injury-related quality of life at 6 and 12 months post-injury than previously validated demographic and clinical covariates. The network analysis suggests that emotional, cognitive, and fatigue symptoms may be useful treatment targets in this population due to high centrality and activating potential of the overall symptom network.

9.
Front Neurol ; 14: 1202967, 2023.
Article in English | MEDLINE | ID: mdl-37662031

ABSTRACT

Objective: The aim of this study was to investigate phosphorylated tau (p-tau181) protein in plasma in a cohort of mild traumatic brain injury (mTBI) patients and a cohort of concussed athletes. Methods: This pilot study comprised two independent cohorts. The first cohort-part of a Traumatic Head Injury Neuroimaging Classification (THINC) study-with a mean age of 46 years was composed of uninjured controls (UIC, n = 30) and mTBI patients (n = 288) recruited from the emergency department with clinical computed tomography (CT) and research magnetic resonance imaging (MRI) findings. The second cohort-with a mean age of 19 years-comprised 133 collegiate athletes with (n = 112) and without (n = 21) concussions. The participants enrolled in the second cohort were a part of a multicenter, prospective, case-control study conducted by the NCAA-DoD Concussion Assessment, Research and Education (CARE) Consortium at six CARE Advanced Research Core (ARC) sites between 2015 and 2019. Blood was collected within 48 h of injury for both cohorts. Plasma concentration (pg/ml) of p-tau181 was measured using the Single Molecule Array ultrasensitive assay. Results: Concentrations of plasma p-tau181 in both cohorts were significantly elevated compared to controls within 48 h of injury, with the highest concentrations of p-tau181 within 18 h of injury, with an area under the curve (AUC) of 0.690-0.748, respectively, in distinguishing mTBI patients and concussed athletes from controls. Among the mTBI patients, the levels of plasma p-tau181 were significantly higher in patients with positive neuroimaging (either CT+/MRI+, n = 74 or CT-/MRI+, n = 89) compared to mTBI patients with negative neuroimaging (CT-/MRI-, n = 111) findings and UIC (P-values < 0.05). Conclusion: These findings indicate that plasma p-tau181 concentrations likely relate to brain injury, with the highest levels in patients with neuroimaging evidence of injury. Future research is needed to replicate and validate this protein assay's performance as a possible early diagnostic biomarker for mTBI/concussions.

10.
JAMA Netw Open ; 6(9): e2335804, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37751204

ABSTRACT

Importance: One traumatic brain injury (TBI) increases the risk of subsequent TBIs. Research on longitudinal outcomes of civilian repetitive TBIs is limited. Objective: To investigate associations between sustaining 1 or more TBIs (ie, postindex TBIs) after study enrollment (ie, index TBIs) and multidimensional outcomes at 1 year and 3 to 7 years. Design, Setting, and Participants: This cohort study included participants presenting to emergency departments enrolled within 24 hours of TBI in the prospective, 18-center Transforming Research and Clinical Knowledge in Traumatic Brain Injury (TRACK-TBI) study (enrollment years, February 2014 to July 2020). Participants who completed outcome assessments at 1 year and 3 to 7 years were included. Data were analyzed from September 2022 to August 2023. Exposures: Postindex TBI(s). Main Outcomes and Measures: Demographic and clinical factors, prior TBI (ie, preindex TBI), and functional (Glasgow Outcome Scale-Extended [GOSE]), postconcussive (Rivermead Post-Concussion Symptoms Questionnaire [RPQ]), psychological distress (Brief Symptom Inventory-18 [BSI-18]), depressive (Patient Health Questionnaire-9 [PHQ-9]), posttraumatic stress disorder (PTSD; PTSD Checklist for DSM-5 [PCL-5]), and health-related quality-of-life (Quality of Life After Brain Injury-Overall Scale [QOLIBRI-OS]) outcomes were assessed. Adjusted mean differences (aMDs) and adjusted relative risks are reported with 95% CIs. Results: Of 2417 TRACK-TBI participants, 1572 completed the outcomes assessment at 1 year (1049 [66.7%] male; mean [SD] age, 41.6 [17.5] years) and 1084 completed the outcomes assessment at 3 to 7 years (714 [65.9%] male; mean [SD] age, 40.6 [17.0] years). At 1 year, a total of 60 participants (4%) were Asian, 255 (16%) were Black, 1213 (77%) were White, 39 (2%) were another race, and 5 (0.3%) had unknown race. At 3 to 7 years, 39 (4%) were Asian, 149 (14%) were Black, 868 (80%) were White, 26 (2%) had another race, and 2 (0.2%) had unknown race. A total of 50 (3.2%) and 132 (12.2%) reported 1 or more postindex TBIs at 1 year and 3 to 7 years, respectively. Risk factors for postindex TBI were psychiatric history, preindex TBI, and extracranial injury severity. At 1 year, compared with those without postindex TBI, participants with postindex TBI had worse functional recovery (GOSE score of 8: adjusted relative risk, 0.57; 95% CI, 0.34-0.96) and health-related quality of life (QOLIBRI-OS: aMD, -15.9; 95% CI, -22.6 to -9.1), and greater postconcussive symptoms (RPQ: aMD, 8.1; 95% CI, 4.2-11.9), psychological distress symptoms (BSI-18: aMD, 5.3; 95% CI, 2.1-8.6), depression symptoms (PHQ-9: aMD, 3.0; 95% CI, 1.5-4.4), and PTSD symptoms (PCL-5: aMD, 7.8; 95% CI, 3.2-12.4). At 3 to 7 years, these associations remained statistically significant. Multiple (2 or more) postindex TBIs were associated with poorer outcomes across all domains. Conclusions and Relevance: In this cohort study of patients with acute TBI, postindex TBI was associated with worse symptomatology across outcome domains at 1 year and 3 to 7 years postinjury, and there was a dose-dependent response with multiple postindex TBIs. These results underscore the critical need to provide TBI prevention, education, counseling, and follow-up care to at-risk patients.


Subject(s)
Brain Injuries, Traumatic , Brain Injuries , Humans , Male , Adult , Female , Cohort Studies , Prospective Studies , Quality of Life , Brain Injuries, Traumatic/epidemiology
11.
J Neurotrauma ; 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37463057

ABSTRACT

We previously described five trajectories of insomnia (each defined by a distinct pattern of insomnia severity over 12 months following traumatic brain injury [TBI]). Our objective in the present study was to estimate the association between insomnia trajectory status and trajectories of mental health and neurocognitive outcomes during the 12 months after TBI. In this study, participants included N = 2022 adults from the Federal Inter-agency Traumatic Brain Injury Repository database and Transforming Research and Clinical Knowledge in TBI (TRACK-TBI) study. The following outcome measures were assessed serially at 2 weeks, and 3, 6, and 12 months post-injury: Insomnia Severity Index, Patient Health Questionnaire, Post-Traumatic Stress Disorder (PTSD) Checklist for Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5), Patient Reported Outcomes Measurement Information System-Pain, and Quality of Life After Brain Injury-Overall Scale. Neurocognitive performance was assessed at 2 weeks, and 6 and 12 months using the Wechsler Adult Intelligence Scales Processing Speed Index and the Trails Making Test Parts A and B. Results indicated that greater insomnia severity was associated with greater abnormality in mental health, quality of life, and neuropsychological testing outcomes. The pattern of insomnia over time tracked the temporal pattern of all these outcomes for all but a very small number of participants. Notably, severe insomnia at 3 or 6 months post-TBI was a risk factor for poor recovery at 12 months post-injury. In conclusion, in this well-characterized sample of individuals with TBI, insomnia severity generally tracked severity of depression, pain, PTSD, quality of life, and neurocognitive outcomes over 12 months post-injury. More intensive sleep assessment is needed to elucidate the nature of these relationships and to help inform best strategies for intervention.

12.
Neurology ; 101(7): e740-e753, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37344231

ABSTRACT

BACKGROUND AND OBJECTIVES: Traumatic brain injury (TBI) may be a chronic condition carrying risk of future sequelae; few prospective studies examine long-term postinjury outcomes. We examined the prevalence of functional, cognitive, and psychiatric change outcomes from 1 to 7 years postinjury. METHODS: Transforming Research and Clinical Knowledge in TBI LONG (TRACK-TBI LONG) participants were prospectively enrolled within 24 hours of injury and followed up to 1 year postinjury; a subset participated in long-term follow-up from 2 to 7 years postinjury. Reliable change thresholds for the Brief Test of Adult Cognition by Telephone General Composite (cognition) and Brief Symptom Inventory (BSI)-18 (psychiatric) were derived from orthopedic trauma controls (OTCs). Multiple assessments were completed (postinjury baseline assessment and 2 or 3 visits 2-7 years postinjury) within a sample subset. Change was assessed for functional outcome (Glasgow Outcome Scale-Extended [GOSE]) and self-report/informant report of decline. Prevalence ratios for outcomes classified as stable, improved, and declined were reported individually and collectively. The Fisher exact test and log-binomial regression models examined factors associated with decline and improvement. RESULTS: Of the sample (N = 1,264; mild TBI [mTBI], Glasgow Coma Scale [GCS] 13-15, n = 917; moderate-to-severe TBI [msTBI], GCS 3-12, n = 193; or OTC n = 154), "stable" was the most prevalent outcome. Functional outcome showed the highest rates of decline, regardless of TBI severity (mild = 29%; moderate/severe = 23%). When measures were collectively considered, rates of decline included mTBI (21%), msTBI (26%), and OTC (15%). Age and preinjury employment status were associated with functional decline (per 10 years; relative risk [RR] 1.16, 95% CI 1.07-1.25, p < 0.001; higher in retired/disabled/not working vs full-time/part-time; RR 1.81, 95% CI 1.33-2.45, respectively) in the mTBI group. Improvement in functional recovery 2-7 years postinjury was associated with higher BSI scores (per 5 points; RR 1.11, 95% CI 1.04-1.18, p = 0.002) and GOSE score of 5-7 (GOSE = 8 as reference; RR 2.64, 95% CI 1.75-3.97, p < 0.001). Higher BSI scores and identifying as Black (RR 2.28, 95% CI 1.59-3.25, p < 0.001) were associated with a greater likelihood of improved psychiatric symptoms in mTBI (RR 1.21, 95% CI 1.14-1.29, p < 0.001). A greater likelihood of cognitive improvement was observed among those with higher educational attainment in msTBI (per 4 years; RR 2.61, 95% CI 1.43-4.79, p = 0.002). DISCUSSION: Function across domains at 1-year postinjury, a common recovery benchmark, undergoes change across the subsequent 6 years. Results support consideration of TBI as a chronic evolving condition and suggest continued monitoring, rehabilitation, and support is required to optimize long-term independence and quality of life.


Subject(s)
Brain Concussion , Brain Injuries, Traumatic , Adult , Humans , Prospective Studies , Quality of Life/psychology , Brain Injuries, Traumatic/epidemiology , Brain Injuries, Traumatic/complications , Brain Concussion/complications , Glasgow Coma Scale
13.
J Neurol Neurosurg Psychiatry ; 94(12): 1012-1017, 2023 12.
Article in English | MEDLINE | ID: mdl-37369556

ABSTRACT

OBJECTIVES: Obesity is associated with chronic inflammation, which may impact recovery from mild traumatic brain injury (mTBI). The objective was to assess the role of obesity in recovery of symptoms, functional outcome and inflammatory blood biomarkers after mTBI. METHODS: TRACK-TBI is a prospective study of patients with acute mTBI (Glasgow Coma Scale=13-15) who were enrolled ≤24 hours of injury at an emergency department of level 1 trauma centres and followed for 12 months. A total of 770 hospitalised patients who were either obese (body mass index (BMI) >30.0) or healthy mass (BMI=18.5-24.9) were enrolled. Blood concentrations of high-sensitivity C reactive protein (hsCRP), interleukin (IL) 6, IL-10, tumour necrosis factor alpha; Rivermead Post-Concussion Symptoms Questionnaire (RPQ), Quality of Life After Brain Injury and Glasgow Outcome Score-Extended reflecting injury-related functional limitations at 6 and 12 months were collected. RESULTS: After adjusting for age and gender, obese participants had higher concentrations of hsCRP 1 day after injury (mean difference (MD)=0.65; 95% CI: 0.44 to 0.87, p<0.001), at 2 weeks (MD=0.99; 95% CI: 0.74 to 1.25, p<0.001) and at 6 months (MD=1.08; 95% CI: 0.79 to 1.37, p<0.001) compared with healthy mass participants. Obese participants had higher concentrations of IL-6 at 2 weeks (MD=0.37; 95% CI: 0.11 to 0.64, p=0.006) and 6 months (MD=0.42; 95% CI: 0.12 to 0.72, p=0.006). Obese participants had higher RPQ total score at 6 months (MD=2.79; p=0.02) and 12 months (MD=2.37; p=0.049). CONCLUSIONS: Obesity is associated with higher symptomatology at 6 and 12 months and higher concentrations of blood inflammatory markers throughout recovery following mTBI.


Subject(s)
Brain Concussion , Brain Injuries, Traumatic , Humans , Brain Concussion/complications , Quality of Life , Prospective Studies , C-Reactive Protein , Obesity/complications , Brain Injuries, Traumatic/complications
14.
JAMA Netw Open ; 6(3): e233660, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36939699

ABSTRACT

Importance: Many level I trauma center patients experience clinical sequelae at 1 year following traumatic brain injury (TBI). Longer-term outcome data are needed to develop better monitoring and rehabilitation services. Objective: To examine functional recovery, TBI-related symptoms, and quality of life from 1 to 5 years postinjury. Design, Setting, and Participants: This cohort study enrolled trauma patients across 18 US level I trauma centers between 2014 and 2018. Eligible participants were enrolled within 24 hours of injury and followed up to 5 years postinjury. Data were analyzed January 2023. Exposures: Mild TBI (mTBI), moderate-severe TBI (msTBI), or orthopedic traumatic controls (OTC). Main Outcomes and Measures: Functional independence (Glasgow Outcome Scale-Extended [GOSE] score 5 or higher), complete functional recovery (GOSE score, 8), better (ie, lower) TBI-related symptom burden (Rivermead Post Concussion Symptoms Questionnaire score of 15 or lower), and better (ie, higher) health-related quality of life (Quality of Life After Brain Injury Scale-Overall Scale score 52 or higher); mortality was analyzed as a secondary outcome. Results: A total 1196 patients were included in analysis (mean [SD] age, 40.8 [16.9] years; 781 [65%] male; 158 [13%] Black, 965 [81%] White). mTBI and OTC groups demonstrated stable, high rates of functional independence (98% to 100% across time). While odds of independence were lower among msTBI survivors, the majority were independent at 1 year (72%), and this proportion increased over time (80% at 5 years; group × year, P = .005; independence per year: odds ratio [OR] for msTBI, 1.28; 95% CI, 1.03-1.58; OR for mTBI, 0.81; 95% CI, 0.64-1.03). For other outcomes, group differences at 1 year remained stable over time (group × year, P ≥ .44). Odds of complete functional recovery remained lower for persons with mTBI vs OTC (OR, 0.39; 95% CI, 0.28-0.56) and lower for msTBI vs mTBI (OR, 0.34; 95% CI, 0.24-0.48). Odds of better TBI-related symptom burden and quality of life were similar for both TBI subgroups and lower than OTCs. Mortality between 1 and 5 years was higher for msTBI (5.5%) than mTBI (1.5%) and OTC (0.7%; P = .02). Conclusions and Relevance: In this cohort study, patients with previous msTBI displayed increased independence over 5 years; msTBI was also associated with increased mortality. These findings, in combination with the persistently elevated rates of unfavorable outcomes in mTBI vs controls imply that more monitoring and rehabilitation are needed for TBI.


Subject(s)
Brain Concussion , Brain Injuries, Traumatic , Brain Injuries , Humans , Male , Adult , Female , Cohort Studies , Quality of Life , Brain Injuries, Traumatic/epidemiology , Brain Concussion/epidemiology
15.
Am J Sports Med ; 51(14): 3893-3903, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36847271

ABSTRACT

BACKGROUND: Numerous individual studies suggest that rest may have a negative effect on outcomes following concussion. PURPOSE: To perform a systematic meta-analysis of the effects of prescribed rest compared with active interventions after concussion. STUDY DESIGN: Meta-analysis; Level of evidence, 4. METHODS: A meta-analysis (using the Hedges g) of randomized controlled trials and cohort studies was conducted to evaluate the effects of prescribed rest on symptoms and recovery time after concussion. Subgroup analyses were performed for methodological, study, and sample characteristics. Data sources were obtained from systematic search of key terms using Ovid Medline, Embase, Cochrane Database of Systematic Reviews, APA PsycINFO, Web of Science, SPORTDiscus, and ProQuest dissertations and theses through May 28, 2021. Eligible studies were those that (1) assessed concussion or mild traumatic brain injury; (2) included symptoms or days to recovery for ≥2 time points; (3) included 2 groups with 1 group assigned to rest; and (4) were written in the English language. RESULTS: In total, 19 studies involving 4239 participants met criteria. Prescribed rest had a significant negative effect on symptoms (k = 15; g = -0.27; SE = 0.11; 95% CI, -0.48 to -0.05; P = .04) but not on recovery time (k = 8; g = -0.16; SE = 0.21; 95% CI, -0.57 to 0.26; P = .03). Subgroup analyses suggested that studies with shorter duration (<28 days) (g = -0.46; k = 5), studies involving youth (g = -0.33; k = 12), and studies focused on sport-related concussion (g = -0.38; k = 8) reported higher effect sizes. CONCLUSION: The findings support a small negative effect for prescribed rest on symptoms after concussion. Younger age and sport-related mechanisms of injury were associated with a greater negative effect size. However, the lack of support for an effect for recovery time and the relatively small overall numbers of eligible studies highlight ongoing concerns regarding the quantity and rigor of clinical trials in concussion. REGISTRATION: CRD42021253060 (PROSPERO).


Subject(s)
Athletic Injuries , Brain Concussion , Sports , Adolescent , Humans , Brain Concussion/diagnosis , Brain Concussion/therapy , Athletic Injuries/diagnosis , Athletic Injuries/therapy , Systematic Reviews as Topic , Time Factors
16.
J Head Trauma Rehabil ; 38(2): 165-174, 2023.
Article in English | MEDLINE | ID: mdl-36731041

ABSTRACT

OBJECTIVE: To test the hypotheses that (1) higher neighborhood disadvantage is associated with greater injury-related symptom severity in civilians with mild traumatic brain injury (mTBI) and (2) neighborhood disadvantage remains predictive after controlling for other established predictors. SETTING: Level 1 trauma center and affiliated academic medical center. PARTICIPANTS: N = 171 individuals with mTBI. DESIGN: Prospective cohort study. MAIN MEASURES: Rivermead Post Concussion Symptoms Questionnaire (RPQ) total score assessed less than 24 hours and at 2 weeks, 3 months, and 6 months postinjury. Linear mixed-effects models were used to assess the relationship between predictor variables and mTBI-related symptom burden (RPQ score). Neighborhood disadvantage was quantified by the Area Deprivation Index (ADI), a composite of 17 markers of socioeconomic position (SEP) scored at the census block group level. RESULTS: Individuals in the upper ADI quartile of the national distribution displayed higher RPQ symptoms than those in the lower 3 quartiles ( P < .001), with a nonsignificant ADI × visit interaction ( P = .903). In a multivariable model, the effect of ADI remained significant ( P = .034) after adjusting for demographics, individual SEP, and injury factors. Other unique predictors in the multivariable model were gender (gender × visit P = .035), health insurance type ( P = .017), and injury-related litigation ( P = .012). CONCLUSION: Neighborhood disadvantage as quantified by the ADI is robustly associated with greater mTBI-related symptom burden throughout the first 6 months postinjury. That the effect of ADI remained after controlling for demographics, individual SEP, and injury characteristics implies that neighborhood disadvantage is an important, understudied factor contributing to clinical recovery from mTBI.


Subject(s)
Brain Concussion , Post-Concussion Syndrome , Humans , Brain Concussion/epidemiology , Brain Concussion/complications , Prospective Studies , Insurance, Health , Trauma Centers , Neighborhood Characteristics , Post-Concussion Syndrome/complications
17.
Transl Psychiatry ; 13(1): 24, 2023 01 25.
Article in English | MEDLINE | ID: mdl-36693822

ABSTRACT

Many patients with mild traumatic brain injury (mTBI) are at risk for mental health problems such as posttraumatic stress disorder (PTSD). The objective of this study was to determine whether the polygenic risk for PTSD (or for related mental health disorders or traits including major depressive disorder [MDD] and neuroticism [NEU]) was associated with an increased likelihood of PTSD in the aftermath of mTBI. We used data from individuals of European ancestry with mTBI enrolled in TRACK-TBI (n = 714), a prospective longitudinal study of level 1 trauma center patients. One hundred and sixteen mTBI patients (16.3%) had probable PTSD (PCL-5 score ≥33) at 6 months post-injury. We used summary statistics from recent GWAS studies of PTSD, MDD, and NEU to generate polygenic risk scores (PRS) for individuals in our sample. A multivariable model that included age, sex, pre-injury history of mental disorder, and cause of injury explained 7% of the variance in the PTSD outcome; the addition of the PTSD-PRS (and five ancestral principal components) significantly increased the variance explained to 11%. The adjusted odds of PTSD in the uppermost PTSD-PRS quintile was nearly four times higher (aOR = 3.71, 95% CI 1.80-7.65) than in the lowest PTSD-PRS quintile. There was no evidence of a statistically significant interaction between PTSD-PRS and prior history of mental disorder, indicating that PTSD-PRS had similar predictive utility among those with and without pre-injury psychiatric illness. When added to the model, neither MDD-PRS nor NEU-PRS were significantly associated with the PTSD outcome. These findings show that the risk for PTSD in the context of mTBI is, in part, genetically influenced. They also raise the possibility that an individual's PRS could be clinically actionable if used-possibly with other non-genetic predictors-to signal the need for enhanced follow-up and early intervention; this precision medicine approach needs to be prospectively studied.


Subject(s)
Brain Concussion , Depressive Disorder, Major , Stress Disorders, Post-Traumatic , Humans , Brain Concussion/complications , Stress Disorders, Post-Traumatic/psychology , Prospective Studies , Longitudinal Studies , Depressive Disorder, Major/genetics , Depressive Disorder, Major/complications
18.
J Head Trauma Rehabil ; 38(4): E318-E327, 2023.
Article in English | MEDLINE | ID: mdl-36696236

ABSTRACT

OBJECTIVE: To assess mild traumatic brain injury (mTBI)-related alterations in baseline (resting) salivary cortisol and cortisol reactivity to cognitive and exercise stressors, which are frequently encountered during mTBI rehabilitation and recovery. SETTING: Persons with mTBI were recruited from a level 1 trauma center emergency department. Uninjured controls (UCs) were recruited from the community. PARTICIPANTS: Participants were 37 individuals with mTBI and 24 UCs. All patients with mTBI were enrolled at 7 ± 3 days post-injury, met the American Congress of Rehabilitation Medicine definition of mTBI, and had no acute intracranial findings on clinical neuroimaging (if performed). DESIGN: A prospective cohort study design was used. All participants provided saliva samples 10 times during each of 2 visits spaced 3 weeks apart (1 week and 1 month post-injury for the mTBI group). Each visit included baseline saliva sampling and sampling to evaluate reactivity to a cognitive stressor (Paced Auditory Serial Addition Test) and physical stressor (Buffalo Concussion Treadmill Test [BCTT]). MAIN OUTCOME MEASURE: Natural log-transformed salivary cortisol was measured by enzyme immunoassay. Cortisol was predicted using a linear mixed-effects model by group (mTBI and UC), visit (1 week and 1 month), and saliva sample. RESULTS: Mean salivary cortisol was higher in the mTBI group (1.67 nmol/L [95% CI 1.42-1.72]) than in controls (1.30 nmol/L [1.12-1.47]), without an mTBI × time interaction. At 1 week, the mTBI group had greater cortisol reactivity in response to the BCTT. CONCLUSIONS: Higher cortisol in individuals with mTBI at 1 week and 1 month post-injury extends previous findings into the subacute recovery period. Furthermore, the mTBI group demonstrated a greater cortisol response to mild-to-moderate aerobic exercise (BCTT) at 1 week post-injury. Given the increasing role of exercise in mTBI rehabilitation, further research is warranted to replicate these findings and identify the clinical implications, if any, of enhanced hypothalamic-pituitary-adrenal axis responses to exercise in civilians with recent mTBI.


Subject(s)
Brain Concussion , Humans , Hydrocortisone , Hypothalamo-Hypophyseal System , Prospective Studies , Pituitary-Adrenal System
19.
Neuropsychol Rev ; 33(1): 160-191, 2023 03.
Article in English | MEDLINE | ID: mdl-32808244

ABSTRACT

Mild traumatic brain injury (mTBI) is a major public health concern. Cerebrovascular alterations play a significant role in the evolution of injury sequelae and in the process of post-traumatic brain repair. Arterial spin labeling (ASL) is an advanced perfusion magnetic resonance imaging technique that permits noninvasive quantification of cerebral blood flow (CBF). This is the first systematic review of ASL research findings in patients with mTBI. Our approach followed the American Academy of Neurology (AAN) and PRISMA guidelines. We searched Ovid/MEDLINE, Web of Science, Scopus, and the Cochrane Index for relevant articles published as of February 20, 2020. Full-text results were combined into Rayyan software for further evaluation. Data extraction, including risk of bias ratings, was performed using American Academy of Neurology's four-tiered classification scheme. Twenty-three articles met inclusion criteria comprising data on up to 566 mTBI patients and 654 control subjects. Of the 23 studies, 18 reported some type of regional CBF abnormality in mTBI patients at rest or during a cognitive task, with more findings of decreased than increased CBF. The evidence supports the conclusion that mTBI likely causes ASL-derived CBF anomalies. However, synthesis of findings was challenging due to substantial methodological variations across studies and few studies with low risk of bias. Thus, larger-scale prospective cohort studies are needed to more definitively chart the course of CBF changes in humans after mTBI and to understand how individual difference factors contribute to post-injury CBF changes.


Subject(s)
Brain Concussion , Magnetic Resonance Imaging , Humans , Prospective Studies , Brain/diagnostic imaging , Magnetic Resonance Angiography/methods , Brain Concussion/diagnostic imaging , Perfusion
20.
J Int Neuropsychol Soc ; 29(7): 696-703, 2023 08.
Article in English | MEDLINE | ID: mdl-36325632

ABSTRACT

OBJECTIVE: Despite the public health burden of traumatic brain injury (TBI) across broader society, most TBI studies have been isolated to a distinct subpopulation. The TBI research literature is fragmented further because often studies of distinct populations have used different assessment procedures and instruments. Addressing calls to harmonize the literature will require tools to link data collected from different instruments that measure the same construct, such as civilian mild traumatic brain injury (mTBI) and sports concussion symptom inventories. METHOD: We used item response theory (IRT) to link scores from the Rivermead Post Concussion Symptoms Questionnaire (RPQ) and the Sport Concussion Assessment Tool (SCAT) symptom checklist, widely used instruments for assessing civilian and sport-related mTBI symptoms, respectively. The sample included data from n = 397 patients who suffered a sports-related concussion, civilian mTBI, orthopedic injury control, or non-athlete control and completed the SCAT and/or RPQ. RESULTS: The results of several analyses supported sufficient unidimensionality to treat the RPQ + SCAT combined item set as measuring a single construct. Fixed-parameter IRT was used to create a cross-walk table that maps RPQ total scores to SCAT symptom severity scores. Linked and observed scores were highly correlated (r = .92). Standard errors of the IRT scores were slightly higher for civilian mTBI patients and orthopedic controls, particularly for RPQ scores linked from the SCAT. CONCLUSION: By linking the RPQ to the SCAT we facilitated efforts to effectively combine samples and harmonize data relating to mTBI.


Subject(s)
Brain Concussion , Brain Injuries, Traumatic , Post-Concussion Syndrome , Sports , Humans , Brain Concussion/diagnosis , Brain Concussion/etiology , Post-Concussion Syndrome/diagnosis , Post-Concussion Syndrome/etiology , Surveys and Questionnaires
SELECTION OF CITATIONS
SEARCH DETAIL
...