Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 176
Filter
1.
Am J Physiol Regul Integr Comp Physiol ; 327(1): R97-R108, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38780425

ABSTRACT

The transitional epithelial cells (urothelium) that line the lumen of the urinary bladder form a barrier between potentially harmful pathogens, toxins, and other bladder contents and the inner layers of the bladder wall. The urothelium, however, is not simply a passive barrier, as it can produce signaling factors, such as ATP, nitric oxide, prostaglandins, and other prostanoids, that can modulate bladder function. We investigated whether substances produced by the urothelium could directly modulate the contractility of the underlying urinary bladder smooth muscle. Force was measured in isolated strips of mouse urinary bladder with the urothelium intact or denuded. Bladder strips developed spontaneous tone and phasic contractions. In urothelium-intact strips, basal tone, as well as the frequency and amplitude of phasic contractions, were 25%, 32%, and 338% higher than in urothelium-denuded strips, respectively. Basal tone and phasic contractility in urothelium-intact bladder strips were abolished by the cyclooxygenase (COX) inhibitor indomethacin (10 µM) or the voltage-dependent Ca2+ channel blocker diltiazem (50 µM), whereas blocking neuronal sodium channels with tetrodotoxin (1 µM) had no effect. These results suggest that prostanoids produced in the urothelium enhance smooth muscle tone and phasic contractions by activating voltage-dependent Ca2+ channels in the underlying bladder smooth muscle. We went on to demonstrate that blocking COX inhibits the generation of transient pressure events in isolated pressurized bladders and greatly attenuates the afferent nerve activity during bladder filling, suggesting that urothelial prostanoids may also play a role in sensory nerve signaling.NEW & NOTEWORTHY This paper provides evidence for the role of urothelial-derived prostanoids in maintaining tone in the urinary bladder during bladder filling, not only underscoring the role of the urothelium as more than a barrier but also contributing to active regulation of the urinary bladder. Furthermore, cyclooxygenase products greatly augment sensory nerve activity generated by bladder afferents during bladder filling and thus may play a role in perception of bladder fullness.


Subject(s)
Mice, Inbred C57BL , Muscle Contraction , Muscle, Smooth , Prostaglandins , Urinary Bladder , Urothelium , Animals , Urinary Bladder/innervation , Urinary Bladder/physiology , Urinary Bladder/drug effects , Urothelium/innervation , Urothelium/drug effects , Urothelium/metabolism , Urothelium/physiology , Muscle Contraction/drug effects , Prostaglandins/metabolism , Muscle, Smooth/drug effects , Muscle, Smooth/innervation , Muscle, Smooth/physiology , Muscle, Smooth/metabolism , Mice , Male , Neurons, Afferent/physiology , Neurons, Afferent/drug effects , Neurons, Afferent/metabolism , Cyclooxygenase Inhibitors/pharmacology , Female
2.
Biophys J ; 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38444160

ABSTRACT

Capillaries, composed of electrically coupled endothelial cells and overlying pericytes, constitute the vast majority of blood vessels in the brain. The most arteriole-proximate three to four branches of the capillary bed are covered by α-actin-expressing, contractile pericytes. These mural cells have a distinctive morphology and express different markers compared with their smooth muscle cell (SMC) cousins but share similar excitation-coupling contraction machinery. Despite this similarity, pericytes are considerably more depolarized than SMCs at low intravascular pressures. We have recently shown that pericytes, such as SMCs, possess functional voltage-dependent Ca2+ channels and ATP-sensitive K+ channels. Here, we further investigate the complement of pericyte ion channels, focusing on members of the K+ channel superfamily. Using NG2-DsRed-transgenic mice and diverse configurations of the patch-clamp technique, we demonstrate that pericytes display robust inward-rectifier K+ currents that are primarily mediated by the Kir2 family, based on their unique biophysical characteristics and sensitivity to micromolar concentrations of Ba2+. Moreover, multiple lines of evidence, including characteristic kinetics, sensitivity to specific blockers, biophysical attributes, and distinctive single-channel properties, established the functional expression of two voltage-dependent K+ channels: KV1 and BKCa. Although these three types of channels are also present in SMCs, they exhibit distinctive current density and kinetics profiles in pericytes. Collectively, these findings underscore differences in the operation of shared molecular features between pericytes and SMCs and highlight the potential contribution of these three K+ ion channels in setting pericyte membrane potential, modulating capillary hemodynamics, and regulating cerebral blood flow.

3.
J Cereb Blood Flow Metab ; 44(5): 680-688, 2024 May.
Article in English | MEDLINE | ID: mdl-38420777

ABSTRACT

The accumulation of the microtubule-associated tau protein in and around blood vessels contributes to brain microvascular dysfunction through mechanisms that are incompletely understood. Delivery of nutrients to active neurons in the brain relies on capillary calcium (Ca2+) signals to direct blood flow. The initiation and amplification of endothelial cell Ca2+ signals require an intact microtubule cytoskeleton. Since tau accumulation in endothelial cells disrupts native microtubule stability, we reasoned that tau-induced microtubule destabilization would impair endothelial Ca2+ signaling. We tested the hypothesis that tau disrupts the regulation of local cerebral blood flow by reducing endothelial cell Ca2+ signals and endothelial-dependent vasodilation. We used a pathogenic soluble tau peptide (T-peptide) model of tau aggregation and mice with genetically encoded endothelial Ca2+ sensors to measure cerebrovascular endothelial responses to tau exposure. T-peptide significantly attenuated endothelial Ca2+ activity and cortical capillary blood flow in vivo. Further, T-peptide application constricted pressurized cerebral arteries and inhibited endothelium-dependent vasodilation. This study demonstrates that pathogenic tau alters cerebrovascular function through direct attenuation of endothelial Ca2+ signaling and endothelium-dependent vasodilation.


Subject(s)
Calcium Signaling , Cerebrovascular Circulation , Microvessels , Vasodilation , tau Proteins , Animals , Vasodilation/drug effects , Calcium Signaling/drug effects , Mice , tau Proteins/metabolism , Microvessels/metabolism , Microvessels/drug effects , Cerebrovascular Circulation/drug effects , Cerebrovascular Circulation/physiology , Brain/blood supply , Brain/metabolism , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Male , Endothelium, Vascular/metabolism , Endothelium, Vascular/drug effects , Calcium/metabolism
4.
J Clin Invest ; 134(8)2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38386425

ABSTRACT

Loss of arterial smooth muscle cells (SMCs) and abnormal accumulation of the extracellular domain of the NOTCH3 receptor (Notch3ECD) are the 2 core features of CADASIL, a common cerebral small vessel disease caused by highly stereotyped dominant mutations in NOTCH3. Yet the relationship between NOTCH3 receptor activity, Notch3ECD accumulation, and arterial SMC loss has remained elusive, hampering the development of disease-modifying therapies. Using dedicated histopathological and multiscale imaging modalities, we could detect and quantify previously undetectable CADASIL-driven arterial SMC loss in the CNS of mice expressing the archetypal Arg169Cys mutation. We found that arterial pathology was more severe and Notch3ECD accumulation greater in transgenic mice overexpressing the mutation on a wild-type Notch3 background (TgNotch3R169C) than in knockin Notch3R170C/R170C mice expressing this mutation without a wild-type Notch3 copy. Notably, expression of Notch3-regulated genes was essentially unchanged in TgNotch3R169C arteries. We further showed that wild-type Notch3ECD coaggregated with mutant Notch3ECD and that elimination of 1 copy of wild-type Notch3 in TgNotch3R169C was sufficient to attenuate Notch3ECD accumulation and arterial pathology. These findings suggest that Notch3ECD accumulation, involving mutant and wild-type NOTCH3, is a major driver of arterial SMC loss in CADASIL, paving the way for NOTCH3-lowering therapeutic strategies.


Subject(s)
CADASIL , Mice , Animals , Receptor, Notch3/genetics , CADASIL/genetics , CADASIL/metabolism , CADASIL/pathology , Protein Aggregates , Receptors, Notch/genetics , Receptors, Notch/metabolism , Arteries/pathology , Mice, Transgenic , Mutation
5.
Int J Mol Sci ; 24(22)2023 Nov 14.
Article in English | MEDLINE | ID: mdl-38003472

ABSTRACT

Functional hyperemia-activity-dependent increases in local blood perfusion-underlies the on-demand delivery of blood to regions of enhanced neuronal activity, a process that is crucial for brain health. Importantly, functional hyperemia deficits have been linked to multiple dementia risk factors, including aging, chronic hypertension, and cerebral small vessel disease (cSVD). We previously reported crippled functional hyperemia in a mouse model of genetic cSVD that was likely caused by depletion of phosphatidylinositol 4,5-bisphosphate (PIP2) in capillary endothelial cells (EC) downstream of impaired epidermal growth factor receptor (EGFR) signaling. Here, using EC-specific EGFR-knockout (KO) mice, we directly examined the role of endothelial EGFR signaling in functional hyperemia, assessed by measuring increases in cerebral blood flow in response to contralateral whisker stimulation using laser Doppler flowmetry. Molecular characterizations showed that EGFR expression was dramatically decreased in freshly isolated capillaries from EC-EGFR-KO mice, as expected. Notably, whisker stimulation-induced functional hyperemia was significantly impaired in these mice, an effect that was rescued by administration of PIP2, but not by the EGFR ligand, HB-EGF. These data suggest that the deletion of the EGFR specifically in ECs attenuates functional hyperemia, likely via depleting PIP2 and subsequently incapacitating Kir2.1 channel functionality in capillary ECs. Thus, our study underscores the role of endothelial EGFR signaling in functional hyperemia of the brain.


Subject(s)
Endothelial Cells , Hyperemia , Mice , Animals , Endothelial Cells/metabolism , ErbB Receptors/genetics , ErbB Receptors/metabolism , Brain/metabolism , EGF Family of Proteins/metabolism , EGF Family of Proteins/pharmacology , Epidermal Growth Factor/metabolism
6.
bioRxiv ; 2023 Sep 17.
Article in English | MEDLINE | ID: mdl-37745396

ABSTRACT

Functional hyperemia - activity-dependent increases in local blood perfusion - underlies the on-demand delivery of blood to regions of enhanced neuronal activity, a process that is crucial for brain health. Importantly, functional hyperemia deficits have been linked to multiple dementia risk factors, including aging, chronic hypertension, and cerebral small vessel disease (cSVD). We previously reported crippled functional hyperemia in a mouse model of genetic cSVD that was likely caused by depletion of phosphatidylinositol 4,5-bisphosphate (PIP2) in capillary endothelial cells (EC) downstream of impaired epidermal growth factor receptor (EGFR) signaling. Here, using EC-specific EGFR-knockout (KO) mice, we directly examined the role of endothelial EGFR signaling in functional hyperemia, assessed by measuring increases in cerebral blood flow in response to contralateral whisker stimulation using laser Doppler flowmetry. Molecular characterizations showed that EGFR expression was dramatically decreased in freshly isolated capillaries from EC-EGFR-KO mice, as expected. Notably, whisker stimulation-induced functional hyperemia was significantly impaired in these mice, an effect that was rescued by exogenous administration of PIP2, but not by the EGFR ligand, HB-EGF. These data suggest that the deletion of the EGFR specifically in ECs depletes PIP2 and attenuates functional hyperemia, underscoring the central role of the endothelial EGFR signaling in cerebral blood flow regulation.

7.
bioRxiv ; 2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37609200

ABSTRACT

The accumulation of the microtubule-associated tau protein in and around blood vessels contributes to brain microvascular dysfunction through mechanisms that are incompletely understood. Delivery of nutrients to active neurons in the brain relies on capillary inositol 1,4,5-triphosphate receptor (IP3R)-mediated calcium (Ca2+) signals to direct blood flow. The initiation and amplification of endothelial cell IP3R-mediated Ca2+ signals requires an intact microtubule cytoskeleton. Since tau accumulation in endothelial cells disrupts native microtubule stability, we reasoned that tau-induced microtubule destabilization would impair endothelial IP3-evoked Ca2+ signaling. We tested the hypothesis that tau disrupts the regulation of local cerebral blood flow by reducing endothelial cell Ca2+ signals and endothelial-dependent vasodilation. We used a pathogenic soluble tau peptide (T-peptide) model of tau aggregation and mice with genetically encoded endothelial Ca2+ sensors to measure cerebrovascular endothelial responses to tau exposure. T-peptide significantly attenuated endothelial Ca2+ activity and cortical capillary blood flow in vivo within 120 seconds. Further, T-peptide application constricted pressurized cerebral arteries and inhibited endothelium-dependent vasodilation. This study demonstrates that pathogenic tau alters cerebrovascular function through direct attenuation of endothelial Ca2+ signaling and endothelium-dependent vasodilation.

8.
Proc Natl Acad Sci U S A ; 120(33): e2307513120, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37549299

ABSTRACT

The deficit in cerebral blood flow (CBF) seen in patients with hypertension-induced vascular dementia is increasingly viewed as a therapeutic target for disease-modifying therapy. Progress is limited, however, due to uncertainty surrounding the mechanisms through which elevated blood pressure reduces CBF. To investigate this, we used the BPH/2 mouse, a polygenic model of hypertension. At 8 mo of age, hypertensive mice exhibited reduced CBF and cognitive impairment, mimicking the human presentation of vascular dementia. Small cerebral resistance arteries that run across the surface of the brain (pial arteries) showed enhanced pressure-induced constriction due to diminished activity of large-conductance Ca2+-activated K+ (BK) channels-key vasodilatory ion channels of cerebral vascular smooth muscle cells. Activation of BK channels by transient intracellular Ca2+ signals from the sarcoplasmic reticulum (SR), termed Ca2+ sparks, leads to hyperpolarization and vasodilation. Combining patch-clamp electrophysiology, high-speed confocal imaging, and proximity ligation assays, we demonstrated that this vasodilatory mechanism is uncoupled in hypertensive mice, an effect attributable to physical separation of the plasma membrane from the SR rather than altered properties of BK channels or Ca2+ sparks, which remained intact. This pathogenic mechanism is responsible for the observed increase in constriction and can now be targeted as a possible avenue for restoring healthy CBF in vascular dementia.


Subject(s)
Dementia, Vascular , Hypertension , Mice , Humans , Animals , Large-Conductance Calcium-Activated Potassium Channels/metabolism , Dementia, Vascular/etiology , Dementia, Vascular/metabolism , Muscle, Smooth, Vascular/metabolism , Cerebral Arteries/metabolism , Calcium Signaling/physiology , Calcium/metabolism
9.
J Immunol ; 211(4): 648-657, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37405700

ABSTRACT

Drugs are needed to protect against the neutrophil-derived histones responsible for endothelial injury in acute inflammatory conditions such as trauma and sepsis. Heparin and other polyanions can neutralize histones but challenges with dosing or side effects such as bleeding limit clinical application. In this study, we demonstrate that suramin, a widely available polyanionic drug, completely neutralizes the toxic effects of individual histones, but not citrullinated histones from neutrophil extracellular traps. The sulfate groups on suramin form stable electrostatic interactions with hydrogen bonds in the histone octamer with a dissociation constant of 250 nM. In cultured endothelial cells (Ea.Hy926), histone-induced thrombin generation was significantly decreased by suramin. In isolated murine blood vessels, suramin abolished aberrant endothelial cell calcium signals and rescued impaired endothelial-dependent vasodilation caused by histones. Suramin significantly decreased pulmonary endothelial cell ICAM-1 expression and neutrophil recruitment caused by infusion of sublethal doses of histones in vivo. Suramin also prevented histone-induced lung endothelial cell cytotoxicity in vitro and lung edema, intra-alveolar hemorrhage, and mortality in mice receiving a lethal dose of histones. Protection of vascular endothelial function from histone-induced damage is a novel mechanism of action for suramin with therapeutic implications for conditions characterized by elevated histone levels.


Subject(s)
Histones , Suramin , Mice , Animals , Histones/metabolism , Suramin/pharmacology , Endothelial Cells/metabolism , Endothelium/metabolism , Hemorrhage
10.
Proc Natl Acad Sci U S A ; 120(9): e2216421120, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36802432

ABSTRACT

Arteriolar smooth muscle cells (SMCs) and capillary pericytes dynamically regulate blood flow in the central nervous system in the face of fluctuating perfusion pressures. Pressure-induced depolarization and Ca2+ elevation provide a mechanism for regulation of SMC contraction, but whether pericytes participate in pressure-induced changes in blood flow remains unknown. Here, utilizing a pressurized whole-retina preparation, we found that increases in intraluminal pressure in the physiological range induce contraction of both dynamically contractile pericytes in the arteriole-proximate transition zone and distal pericytes of the capillary bed. We found that the contractile response to pressure elevation was slower in distal pericytes than in transition zone pericytes and arteriolar SMCs. Pressure-evoked elevation of cytosolic Ca2+ and contractile responses in SMCs were dependent on voltage-dependent Ca2+ channel (VDCC) activity. In contrast, Ca2+ elevation and contractile responses were partially dependent on VDCC activity in transition zone pericytes and independent of VDCC activity in distal pericytes. In both transition zone and distal pericytes, membrane potential at low inlet pressure (20 mmHg) was approximately -40 mV and was depolarized to approximately -30 mV by an increase in pressure to 80 mmHg. The magnitude of whole-cell VDCC currents in freshly isolated pericytes was approximately half that measured in isolated SMCs. Collectively, these results indicate a loss of VDCC involvement in pressure-induced constriction along the arteriole-capillary continuum. They further suggest that alternative mechanisms and kinetics of Ca2+ elevation, contractility, and blood flow regulation exist in central nervous system capillary networks, distinguishing them from neighboring arterioles.


Subject(s)
Calcium , Pericytes , Pericytes/metabolism , Calcium/metabolism , Calcium Channels, L-Type , Arterioles/physiology , Central Nervous System/metabolism , Calcium, Dietary
11.
J Physiol ; 601(5): 889-901, 2023 03.
Article in English | MEDLINE | ID: mdl-36751860

ABSTRACT

The brain is an energy hog, consuming available energy supplies at a rate out of all proportion to its relatively small size. This outsized demand, largely reflecting the unique computational activity of the brain, is met by an ensemble of neurovascular coupling mechanisms that link neuronal activity with local increases in blood delivery. This just-in-time replenishment strategy, made necessary by the limited energy-storage capacity of neurons, complicates the nutrient-delivery task of the cerebral vasculature, layering on a temporo-spatial requirement that invites - and challenges - mechanistic interpretation. The centre of gravity of research efforts to disentangle these mechanisms has shifted from an initial emphasis on astrocyte-arteriole-level processes to mechanisms that operate on the capillary level, a shift that has brought into sharp focus questions regarding the fine control of blood distribution to active neurons. As these investigations have drilled down into finer reaches of the microvasculature, they have revealed an arteriole-proximate subregion of CNS capillary networks that serves a regulatory function in directing blood flow into and within downstream capillaries. They have also illuminated differences in researchers' perspectives on the vascular structures and identity of mural cells in this region that impart the vasomodulatory effects that control blood distribution. In this review, we highlight the regulatory role of a variably named region of the microvasculature, referred to here as the post-arteriole transition zone, in channeling blood flow within CNS capillary networks, and underscore the contribution of dynamically contractile perivascular mural cell - generally, but not universally, recognized as pericytes - to this function.


Subject(s)
Capillaries , Microvessels , Arterioles/physiology , Capillaries/physiology , Pericytes/physiology , Brain/blood supply
12.
Am J Physiol Regul Integr Comp Physiol ; 323(5): R682-R693, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36121145

ABSTRACT

Storage and voiding functions in urinary bladder are well-known, yet fundamental physiological events coordinating these behaviors remain elusive. We sought to understand how voiding function is influenced by the rate at which the bladder fills. We hypothesized that faster filling rates would increase afferent sensory activity and increase micturition rate. In vivo, this would mean animals experiencing faster bladder filling would void more frequently with smaller void volumes. To test this hypothesis, we measured afferent nerve activity during different filling rates using an ex vivo mouse bladder preparation and assessed voiding frequency in normally behaving mice noninvasively (UroVoid). Bladder afferent nerve activity depended on the filling rate, with faster filling increasing afferent nerve activity at a given volume. Voiding behavior in vivo was measured in UroVoid cages. Male and female mice were given access to tap water or, to induce faster bladder filling rates, water containing 5% sucrose. Fluid intake increased dramatically in mice consuming 5% sucrose. As expected, micturition frequency was elevated in the sucrose group. However, even with the greatly increased rate of urine production, void volumes were unchanged in both genders. Although faster filling rates generated higher afferent nerve rates ex vivo, this did not translate into more frequent, smaller-volume voids in vivo. This suggests afferent nerve activity is only one factor contributing to the switch from bladder filling to micturition. Together with afferent nerve activity, higher centers in the central nervous system and the state of arousal are likely critical to coordinating the micturition reflex.


Subject(s)
Urinary Bladder , Urination , Female , Male , Mice , Animals , Urination/physiology , Urinary Bladder/innervation , Afferent Pathways , Disease Models, Animal , Sucrose , Water
13.
Proc Natl Acad Sci U S A ; 119(26): e2204581119, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35727988

ABSTRACT

The brain microcirculation is increasingly viewed as a potential target for disease-modifying drugs in the treatment of Alzheimer's disease patients, reflecting a growing appreciation of evidence that cerebral blood flow is compromised in such patients. However, the pathogenic mechanisms in brain resistance arteries underlying blood flow defects have not yet been elucidated. Here we probed the roles of principal vasodilatory pathways in cerebral arteries using the APP23 mouse model of Alzheimer's disease, in which amyloid precursor protein is increased approximately sevenfold, leading to neuritic plaques and cerebrovascular accumulation of amyloid-ß similar to those in patients with Alzheimer's disease. Pial arteries from APP23 mice (18 mo old) exhibited enhanced pressure-induced (myogenic) constriction because of a profound reduction in ryanodine receptor-mediated, local calcium-release events ("Ca2+ sparks") in arterial smooth muscle cells and a consequent decrease in the activity of large-conductance Ca2+-activated K+ (BK) channels. The ability of the endothelial cell inward rectifier K+ (Kir2.1) channel to cause dilation was also compromised. Acute application of amyloid-ß 1-40 peptide to cerebral arteries from wild-type mice partially recapitulated the BK dysfunction seen in APP23 mice but had no effect on Kir2.1 function. If mirrored in human Alzheimer's disease, these tandem defects in K+ channel-mediated vasodilation could account for the clinical cerebrovascular presentation seen in patients: reduced blood flow and crippled functional hyperemia. These data direct future research toward approaches that reverse this dual vascular channel dysfunction, with the ultimate aim of restoring healthy cerebral blood flow and improving clinical outcomes.


Subject(s)
Alzheimer Disease , Brain , Calcium Signaling , Large-Conductance Calcium-Activated Potassium Channels , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Animals , Brain/blood supply , Cerebral Arteries/metabolism , Disease Models, Animal , Humans , Large-Conductance Calcium-Activated Potassium Channels/metabolism , Mice , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Vasodilation
14.
Circ Res ; 130(10): 1531-1546, 2022 05 13.
Article in English | MEDLINE | ID: mdl-35382561

ABSTRACT

Capillaries are equipped to sense neurovascular coupling agents released onto the outer wall of a capillary, translating these external signals into electrical/Ca2+ changes that play a crucial role in blood flow regulation and ensuring that neuronal demands are met. However, control mechanisms attributable to forces imposed onto the lumen are less clear. Here, we show that Piezo1 channels act as mechanosensors in central nervous system capillaries. Electrophysiological analyses confirmed expression and function of Piezo1 channels in brain cortical and retinal capillaries. Activation of Piezo1 channels evoked currents that were sensitive to endothelial cell-specific Piezo1 deletion. Using genetically encoded Ca2+ indicator mice and an ex vivo pressurized retina preparation, we found that activation of Piezo1 channels by mechanical forces triggered Ca2+ signals in capillary endothelial cells. Collectively, these findings indicate that Piezo1 channels are capillary mechanosensors that initiate crucial Ca2+ signals and could, therefore, have a profound impact on central nervous system blood flow control.


Subject(s)
Capillaries , Ion Channels , Neurovascular Coupling , Animals , Central Nervous System/blood supply , Endothelial Cells/metabolism , Ion Channels/genetics , Ion Channels/metabolism , Mice
15.
J Cereb Blood Flow Metab ; 42(9): 1693-1706, 2022 09.
Article in English | MEDLINE | ID: mdl-35410518

ABSTRACT

Cerebral blood flow is a finely tuned process dependent on coordinated changes in arterial tone. These changes are strongly tied to smooth muscle membrane potential and inwardly rectifying K+ (KIR) channels are thought to be a key determinant. To elucidate the role of KIR2.1 in cerebral arterial tone development, this study examined the electrical and functional properties of cells, vessels and living tissue from tamoxifen-induced smooth muscle cell (SMC)-specific KIR2.1 knockout mice. Patch-clamp electrophysiology revealed a robust Ba2+-sensitive inwardly rectifying K+ current in cerebral arterial myocytes irrespective of KIR2.1 knockout. Immunolabeling clarified that KIR2.1 expression was low in SMCs while KIR2.2 labeling was remarkably abundant at the membrane. In alignment with these observations, pressure myography revealed that the myogenic response and K+-induced dilation were intact in cerebral arteries post knockout. At the whole organ level, this translated to a maintenance of brain perfusion in SMC KIR2.1-/- mice, as assessed with arterial spin-labeling MRI. We confirmed these findings in superior epigastric arteries and implicated KIR2.2 as more functionally relevant in SMCs. Together, these results suggest that subunits other than KIR2.1 play a significant role in setting native current in SMCs and driving arterial tone.


Subject(s)
Potassium Channels, Inwardly Rectifying , Animals , Cerebral Arteries/physiology , Mice , Mice, Knockout , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Potassium Channels, Inwardly Rectifying/genetics , Potassium Channels, Inwardly Rectifying/metabolism
16.
Sci Signal ; 15(727): eabl5405, 2022 03 29.
Article in English | MEDLINE | ID: mdl-35349300

ABSTRACT

The dense network of capillaries composed of capillary endothelial cells (cECs) and pericytes lies in close proximity to all neurons, ideally positioning it to sense neuron- and glial-derived compounds that enhance regional and global cerebral perfusion. The membrane potential (VM) of vascular cells serves as the physiological bridge that translates brain activity into vascular function. In other beds, the ATP-sensitive K+ (KATP) channel regulates VM in vascular smooth muscle, which is absent in the capillary network. Here, with transgenic mice that expressed a dominant-negative mutant of the pore-forming Kir6.1 subunit specifically in brain cECs or pericytes, we demonstrated that KATP channels were present in both cell types and robustly controlled VM. We further showed that the signaling nucleotide adenosine acted through A2A receptors and the Gαs/cAMP/PKA pathway to activate capillary KATP channels. Moreover, KATP channel stimulation in vivo increased cerebral blood flow (CBF), an effect that was blunted by expression of the dominant-negative Kir6.1 mutant in either capillary cell type. These findings establish an important role for KATP channels in cECs and pericytes in the regulation of CBF.


Subject(s)
Endothelial Cells , Pericytes , Adenosine , Adenosine Triphosphate/metabolism , Animals , Capillaries/metabolism , Endothelial Cells/metabolism , KATP Channels/genetics , KATP Channels/metabolism , Mice , Pericytes/metabolism
18.
J Clin Invest ; 132(8)2022 04 15.
Article in English | MEDLINE | ID: mdl-35202003

ABSTRACT

Cerebral autosomal dominant arteriopathy, subcortical infarcts, and leukoencephalopathy (CADASIL) is the most common monogenic form of small vessel disease characterized by migraine with aura, leukoaraiosis, strokes, and dementia. CADASIL mutations cause cerebrovascular dysfunction in both animal models and humans. Here, we showed that 2 different human CADASIL mutations (Notch3 R90C or R169C) worsen ischemic stroke outcomes in transgenic mice; this was explained by the higher blood flow threshold to maintain tissue viability compared with that in wild type (WT) mice. Both mutants developed larger infarcts and worse neurological deficits compared with WT mice, regardless of age or sex after filament middle cerebral artery occlusion. However, full-field laser speckle flowmetry during distal middle cerebral artery occlusion showed comparable perfusion deficits in mutants and their respective WT controls. Circle of Willis anatomy and pial collateralization also did not differ among the genotypes. In contrast, mutants had a higher cerebral blood flow threshold, below which infarction ensued, suggesting increased sensitivity of brain tissue to ischemia. Electrophysiological recordings revealed a 1.5- to 2-fold higher frequency of peri-infarct spreading depolarizations in CADASIL mutants. Higher extracellular K+ elevations during spreading depolarizations in the mutants implicated a defect in extracellular K+ clearance. Altogether, these data reveal a mechanism of enhanced vulnerability to ischemic injury linked to abnormal extracellular ion homeostasis and susceptibility to ischemic depolarizations in CADASIL.


Subject(s)
CADASIL , Animals , Brain , CADASIL/genetics , Homeostasis , Infarction, Middle Cerebral Artery , Mice , Mutation , Potassium , Receptors, Notch/genetics
19.
Function (Oxf) ; 2(3)2021.
Article in English | MEDLINE | ID: mdl-34568829

ABSTRACT

Trauma can lead to widespread vascular dysfunction, but the underlying mechanisms remain largely unknown. Inward-rectifier potassium channels (Kir2.1) play a critical role in the dynamic regulation of regional perfusion and blood flow. Kir2.1 channel activity requires phosphatidylinositol 4,5-bisphosphate (PIP2), a membrane phospholipid that is degraded by phospholipase A2 (PLA2) in conditions of oxidative stress or inflammation. We hypothesized that PLA2-induced depletion of PIP2 after trauma impairs Kir2.1 channel function. A fluid percussion injury model of traumatic brain injury (TBI) in rats was used to study mesenteric resistance arteries 24 hours after injury. The functional responses of intact arteries were assessed using pressure myography. We analyzed circulating PLA2, hydrogen peroxide (H2O2), and metabolites to identify alterations in signaling pathways associated with PIP2 in TBI. Electrophysiology analysis of freshly-isolated endothelial and smooth muscle cells revealed a significant reduction of Ba2+-sensitive Kir2.1 currents after TBI. Additionally, dilations to elevated extracellular potassium and BaCl2- or ML 133-induced constrictions in pressurized arteries were significantly decreased following TBI, consistent with an impairment of Kir2.1 channel function. The addition of a PIP2 analog to the patch pipette successfully rescued endothelial Kir2.1 currents after TBI. Both H2O2 and PLA2 activity were increased after injury. Metabolomics analysis demonstrated altered lipid metabolism signaling pathways, including increased arachidonic acid, and fatty acid mobilization after TBI. Our findings support a model in which increased H2O2-induced PLA2 activity after trauma hydrolyzes endothelial PIP2, resulting in impaired Kir2.1 channel function.


Subject(s)
Brain Injuries, Traumatic , Hydrogen Peroxide , Rats , Animals , Hemodynamics , Signal Transduction
20.
J Clin Invest ; 131(18)2021 09 15.
Article in English | MEDLINE | ID: mdl-34351870

ABSTRACT

Dementia resulting from small vessel diseases (SVDs) of the brain is an emerging epidemic for which there is no treatment. Hypertension is the major risk factor for SVDs, but how hypertension damages the brain microcirculation is unclear. Here, we show that chronic hypertension in a mouse model progressively disrupts on-demand delivery of blood to metabolically active areas of the brain (functional hyperemia) through diminished activity of the capillary endothelial cell inward-rectifier potassium channel, Kir2.1. Despite similar efficacy in reducing blood pressure, amlodipine, a voltage-dependent calcium-channel blocker, prevented hypertension-related damage to functional hyperemia whereas losartan, an angiotensin II type 1 receptor blocker, did not. We attribute this drug class effect to losartan-induced aldosterone breakthrough, a phenomenon triggered by pharmacological interruption of the renin-angiotensin pathway leading to elevated plasma aldosterone levels. This hypothesis is supported by the finding that combining losartan with the aldosterone receptor antagonist eplerenone prevented the hypertension-related decline in functional hyperemia. Collectively, these data suggest Kir2.1 as a possible therapeutic target in vascular dementia and indicate that concurrent mineralocorticoid aldosterone receptor blockade may aid in protecting against late-life cognitive decline in hypertensive patients treated with angiotensin II type 1 receptor blockers.


Subject(s)
Antihypertensive Agents/therapeutic use , Cerebral Small Vessel Diseases/drug therapy , Cerebral Small Vessel Diseases/etiology , Hyperemia/drug therapy , Hypertension/complications , Hypertension/drug therapy , Amlodipine/therapeutic use , Angiotensin II Type 1 Receptor Blockers/administration & dosage , Angiotensin II Type 1 Receptor Blockers/therapeutic use , Animals , Antihypertensive Agents/administration & dosage , Cerebral Small Vessel Diseases/physiopathology , Cerebrovascular Circulation/drug effects , Cerebrovascular Circulation/physiology , Dementia, Vascular/drug therapy , Dementia, Vascular/etiology , Dementia, Vascular/physiopathology , Disease Models, Animal , Drug Therapy, Combination , Eplerenone/administration & dosage , Eplerenone/therapeutic use , Heart Disease Risk Factors , Humans , Hyperemia/physiopathology , Losartan/administration & dosage , Losartan/therapeutic use , Male , Mice , Microvessels/drug effects , Microvessels/physiopathology , Potassium Channels, Inwardly Rectifying/drug effects , Potassium Channels, Inwardly Rectifying/physiology , Renin-Angiotensin System/drug effects , Renin-Angiotensin System/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...