Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Transl Anim Sci ; 7(1): txad064, 2023 Jan.
Article in English | MEDLINE | ID: mdl-37601954

ABSTRACT

Sire selection for beef on dairy crosses plays an important role in livestock systems as it may affect future performance and carcass traits of growing and finishing crossbred cattle. The phenotypic variation found in beef on dairy crosses has raised concerns from meat packers due to animals with dairy-type carcass characteristics. The use of morphometric measurements may help to understand the phenotypic structures of sire progeny for selecting animals with greater performance. In addition, due to the relationship with growth, these measurements could be used to early predict the performance until the transition from dairy farms to sales. The objectives of this study were 1) to evaluate the effect of different beef sires and breeds on the morphometric measurements of crossbred calves including cannon bone (CB), forearm (FA), hip height (HH), face length (FL), face width (FW) and growth performance; and (2) to predict the weight gain from birth to transition from dairy farms to sale (WG) and the body weight at sale (BW) using such morphometric measurements obtained at first days of animals' life. CB, FA, HH, FL, FW, and weight at 7 ±â€…5 d (BW7) (Table 1) were measured on 206 calves, from four different sire breeds [Angus (AN), SimAngus (SA), Simmental (SI), and Limousin (LI)], from five farms. To evaluate the morphometric measurements at the transition from dairy farms to sale and animal performance 91 out of 206 calves sourced from four farms, and offspring of two different sires (AN and SA) were used. To predict the WG and BW, 97 calves, and offspring of three different sires (AN, SA, and LI) were used. The data were analyzed using a mixed model, considering farm and sire as random effects. To predict WG and BW, two linear models (including or not the morphometric measurements) were used, and a leave-one-out cross-validation strategy was used to evaluate their predictive quality. The HH and BW7 were 7.67% and 10.7% higher (P < 0.05) in SA crossbred calves compared to AN, respectively. However, the ADG and adjusted body weight to 120 d were 14.3% and 9.46% greater (P < 0.05) in AN compared to SA. The morphometric measurements improved the model's predictive performance for WG and BW. In conclusion, morphometric measurements at the first days of calves' life can be used to predict animals' performance in beef on dairy. Such a strategy could lead to optimized management decisions and greater profitability in dairy farms.

2.
J Anim Sci ; 98(8)2020 Aug 01.
Article in English | MEDLINE | ID: mdl-32687162

ABSTRACT

To determine the effects of maternal supplementation on the mRNA abundance of genes associated with metabolic function in fetal muscle and liver, pregnant sows (Landrace × Yorkshire; initial body weight (BW) 221.58 ± 33.26 kg; n = 21) fed a complete gestation diet (corn-soybean meal based diet, CSM) were randomly assigned to 1 of 4 isocaloric supplementation treatments: control (CON, 378 g/d CSM, n = 5), sucrose (SUGAR, 255 g/d crystalized sugar, n = 5), cooked ground beef (BEEF, 330 g/d n = 6), or BEEF + SUGAR (B+S, 165 g/d cooked ground beef and 129 g/d crystalized sugar, n = 5), from days 40 to 110 of gestation. Sows were euthanized on day 111 of gestation. Two male and 2 female fetuses of median BW were selected from each litter, and samples of the longissimus dorsi muscle and liver were collected. Relative transcript level was quantified via qPCR with HPRT1 as the reference gene for both muscle and liver samples. The following genes were selected and analyzed in the muscle: IGF1R, IGF2, IGF2R, GYS-1, IRS-1, INSR, SREBP-1C, and LEPR; while the following were analyzed in the liver: IGF2, IGF2R, FBFase, G6PC, PC, PCK1, FGF21, and LIPC. No effect of fetal sex by maternal treatment interaction was observed in mRNA abundance of any of the genes evaluated (P > 0.11). In muscle, the maternal nutritional treatment influenced (P = 0.02) IGF2 mRNA abundance, with B+S and SUGAR fetuses having lower abundance than CON, which was not different from BEEF. Additionally, SREBP-1 mRNA abundance was greater (P < 0.01) for B+S compared with CON, BEEF, or SUGAR fetuses; and females tended (P = 0.06) to have an increased abundance of SREBP-1 than males. In fetal liver, IGF2R mRNA abundance was greater (P = 0.01) for CON and BEEF than SUGAR and B+S; while FBPase mRNA abundance was greater (P = 0.03) for B+S compared with the other groups. In addition, maternal nutritional tended (P = 0.06) to influence LIPC mRNA abundance, with increased abundance in CON compared with SUGAR and B+S. These data indicate limited changes in transcript abundance due to substitution of supplemental sugar by ground beef during mid to late gestation. However, the differential expression of FBPase and SREBP-1c in response to the simultaneous supplementation of sucrose and ground beef warrants further investigations, since these genes may play important roles in determining the offspring susceptibility to metabolic diseases.


Subject(s)
Dietary Supplements/analysis , Fetal Development/drug effects , Insulin-Like Growth Factor II/genetics , Red Meat/analysis , Sucrose/administration & dosage , Swine/physiology , Animal Feed/analysis , Animals , Body Weight/drug effects , Diet/veterinary , Female , Fetal Development/genetics , Liver/drug effects , Male , Muscles/drug effects , Pregnancy , RNA, Messenger/genetics , Swine/genetics , Swine/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...