Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Lancet Planet Health ; 8(2): e74-e85, 2024 02.
Article in English | MEDLINE | ID: mdl-38331533

ABSTRACT

BACKGROUND: Phthalates are synthetic chemicals widely used in consumer products and have been identified to contribute to preterm birth. Existing studies have methodological limitations and potential effects of di-2-ethylhexyl phthalate (DEHP) replacements are poorly characterised. Attributable fractions and costs have not been quantified, limiting the ability to weigh trade-offs involved in ongoing use. We aimed to leverage a large, diverse US cohort to study associations of phthalate metabolites with birthweight and gestational age, and estimate attributable adverse birth outcomes and associated costs. METHODS: In this prospective analysis we used extant data in the US National Institutes of Health Environmental influences on Child Health Outcomes (ECHO) Program from 1998 to 2022 to study associations of 20 phthalate metabolites with gestational age at birth, birthweight, birth length, and birthweight for gestational age z-scores. We also estimated attributable adverse birth outcomes and associated costs. Mother-child dyads were included in the study if there were one or more urinary phthalate measurements during the index pregnancy; data on child's gestational age and birthweight; and singleton delivery. FINDINGS: We identified 5006 mother-child dyads from 13 cohorts in the ECHO Program. Phthalic acid, diisodecyl phthalate (DiDP), di-n-octyl phthalate (DnOP), and diisononyl phthalate (DiNP) were most strongly associated with gestational age, birth length, and birthweight, especially compared with DEHP or other metabolite groupings. Although DEHP was associated with preterm birth (odds ratio 1·45 [95% CI 1·05-2·01]), the risks per log10 increase were higher for phthalic acid (2·71 [1·91-3·83]), DiNP (2·25 [1·67-3·00]), DiDP (1·69 [1·25-2·28]), and DnOP (2·90 [1·96-4·23]). We estimated 56 595 (sensitivity analyses 24 003-120 116) phthalate-attributable preterm birth cases in 2018 with associated costs of US$3·84 billion (sensitivity analysis 1·63- 8·14 billion). INTERPRETATION: In a large, diverse sample of US births, exposure to DEHP, DiDP, DiNP, and DnOP were associated with decreased gestational age and increased risk of preterm birth, suggesting substantial opportunities for prevention. This finding suggests the adverse consequences of substitution of DEHP with chemically similar phthalates and need to regulate chemicals with similar properties as a class. FUNDING: National Institutes of Health.


Subject(s)
Diethylhexyl Phthalate , Phthalic Acids , Pregnancy Complications , Premature Birth , United States/epidemiology , Pregnancy , Female , Humans , Infant, Newborn , Premature Birth/chemically induced , Premature Birth/epidemiology , Birth Weight
2.
Environ Int ; 183: 108378, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38181479

ABSTRACT

BACKGROUND: Synthetic chemicals are increasingly being recognized for potential independent contributions to preterm birth (PTB) and low birth weight (LBW). Bisphenols, parabens, and triclosan are consumer product chemicals that act via similar mechanisms including estrogen, androgen, and thyroid disruption and oxidative stress. Multiple cohort studies have endeavored to examine effects on birth outcomes, and systematic reviews have been limited due to measurement of 1-2 spot samples during pregnancy and limited diversity of populations. OBJECTIVE: To study the effects of prenatal phenols and parabens on birth size and gestational age (GA) in 3,619 mother-infant pairs from 11 cohorts in the NIH Environmental influences on Child Health Outcomes program. RESULTS: While many associations were modest and statistically imprecise, a 1-unit increase in log10 pregnancy averaged concentration of benzophenone-3 and methylparaben were associated with decreases in birthweight, birthweight adjusted for gestational age and SGA. Increases in the odds of being SGA were 29% (95% CI: 5%, 58%) and 32% (95% CI: 3%, 70%), respectively. Bisphenol S in third trimester was also associated with SGA (OR 1.52, 95% CI 1.08, 2.13). Associations of benzophenone-3 and methylparaben with PTB and LBW were null. In addition, a 1-unit increase in log10 pregnancy averaged concentration of 2,4-dichlorophenol was associated with 43% lower (95% CI: -67%, -2%) odds of low birthweight; the direction of effect was the same for the highly correlated 2,5-dichlorophenol, but with a smaller magnitude (-29%, 95% CI: -53%, 8%). DISCUSSION: In a large and diverse sample generally representative of the United States, benzophenone-3 and methylparaben were associated with lower birthweight as well as birthweight adjusted for gestational age and higher odds of SGA, while 2,4-dichlorophenol. These associations with smaller size at birth are concerning in light of the known consequences of intrauterine growth restriction for multiple important health outcomes emerging later in life.


Subject(s)
Benzophenones , Chlorophenols , Parabens , Premature Birth , Pregnancy , Child , Female , Humans , Infant, Newborn , United States , Parabens/analysis , Birth Weight , Phenol , Phenols/analysis
3.
Alcohol Alcohol ; 59(2)2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38123479

ABSTRACT

This systematic review investigates the bidirectional relationship between alcohol consumption and disrupted circadian rhythms. The goal of this study was to identify (i) the types of circadian rhythm disruptors (i.e. social jet lag, extreme chronotypes, and night shift work) associated with altered alcohol use and (ii) whether sex differences in the consequences of circadian disruption exist. We conducted a search of PubMed, Embase, and PsycINFO exclusively on human research. We identified 177 articles that met the inclusion criteria. Our analyses revealed that social jet lag and the extreme chronotype referred to as eveningness were consistently associated with increased alcohol consumption. Relationships between night shift work and alcohol consumption were variable; half of articles reported no effect of night shift work on alcohol consumption. Both sexes were included as participants in the majority of the chronotype and social jet lag papers, with no sex difference apparent in alcohol consumption. The night shift research, however, contained fewer studies that included both sexes. Not all forms of circadian disruption are associated with comparable patterns of alcohol use. The most at-risk individuals for increased alcohol consumption are those with social jet lag or those of an eveningness chronotype. Direct testing of the associations in this review should be conducted to evaluate the relationships among circadian disruption, alcohol intake, and sex differences to provide insight into temporal risk factors associated with development of alcohol use disorder.


Subject(s)
Jet Lag Syndrome , Sleep , Humans , Male , Female , Circadian Rhythm , Risk Factors , Alcohol Drinking/adverse effects , Alcohol Drinking/epidemiology , Surveys and Questionnaires
4.
Curr Dev Nutr ; 7(11): 102019, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38035205

ABSTRACT

Background: Longitudinal measures of diet spanning pregnancy through adolescence are needed from a large, diverse sample to advance research on the effect of early-life nutrition on child health. The Environmental influences on Child Health Outcomes (ECHO) Program, which includes 69 cohorts, >33,000 pregnancies, and >31,000 children in its first 7-y cycle, provides such data, now publicly available. Objectives: This study aimed to describe dietary intake data available in the ECHO Program as of 31 August, 2022 (end of year 6 of Cycle 1) from pregnancy through adolescence, including estimated sample sizes, and to highlight the potential for future analyses of nutrition and child health. Methods: We identified and categorized ECHO Program dietary intake data, by assessment method, participant (pregnant person or child), and life stage of data collection. We calculated the number of maternal-child dyads with dietary data and the number of participants with repeated measures. We identified diet-related variables derived from raw dietary intake data and nutrient biomarkers measured from biospecimens. Results: Overall, 66 cohorts (26,941 pregnancies, 27,103 children, including 22,712 dyads) across 34 US states/territories provided dietary intake data. Dietary intake assessments included 24-h recalls (1548 pregnancies and 1457 children), food frequency questionnaires (4902 and 4117), dietary screeners (8816 and 23,626), and dietary supplement use questionnaires (24,798 and 26,513). Repeated measures were available for ∼70%, ∼30%, and ∼15% of participants with 24-h recalls, food frequency questionnaires, and dietary screeners, respectively. The available diet-related variables describe nutrient and food intake, diet patterns, and breastfeeding practices. Overall, 17% of participants with dietary intake data had measured nutrient biomarkers. Conclusions: ECHO cohorts have collected longitudinal dietary intake data spanning pregnancy through adolescence from a geographically, socioeconomically, and ethnically diverse US sample. As data collection continues in Cycle 2, these data present an opportunity to advance the field of nutrition and child health.

5.
Front Genet ; 14: 1192799, 2023.
Article in English | MEDLINE | ID: mdl-37229187

ABSTRACT

Acute myeloid leukemia (AML) is a heterogeneous and deadly disease characterized by uncontrolled expansion of malignant blasts. Altered metabolism and dysregulated microRNA (miRNA) expression profiles are both characteristic of AML. However, there is a paucity of studies exploring how changes in the metabolic state of the leukemic cells regulate miRNA expression leading to altered cellular behavior. Here, we blocked pyruvate entry into mitochondria by deleting the Mitochondria Pyruvate Carrier (MPC1) gene in human AML cell lines, which decreased Oxidative Phosphorylation (OXPHOS). This metabolic shift also led to increased expression of miR-1 in the human AML cell lines tested. AML patient sample datasets showed that higher miR-1 expression correlates with reduced survival. Transcriptional and metabolic profiling of miR-1 overexpressing AML cells revealed that miR-1 increased OXPHOS, along with key metabolites that fuel the TCA cycle such as glutamine and fumaric acid. Inhibition of glutaminolysis decreased OXPHOS in miR-1 overexpressing MV4-11 cells, highlighting that miR-1 promotes OXPHOS through glutaminolysis. Finally, overexpression of miR-1 in AML cells exacerbated disease in a mouse xenograft model. Together, our work expands current knowledge within the field by uncovering novel connections between AML cell metabolism and miRNA expression that facilitates disease progression. Further, our work points to miR-1 as a potential new therapeutic target that may be used to disrupt AML cell metabolism and thus pathogenesis in the clinic.

6.
bioRxiv ; 2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36993296

ABSTRACT

Regulation of the microbiota is critical to intestinal health yet the mechanisms employed by innate immunity remain unclear. Here we show that mice deficient in the C-Type-lectin receptor, Clec12a developed severe colitis, which was dependent on the microbiota. Fecal-microbiota-transplantation (FMT) studies into germfree mice revealed a colitogenic microbiota formed within Clec12a -/- mice that was marked by expansion of the gram-positive organism, Faecalibaculum rodentium . Treatment with F. rodentium was sufficient to worsen colitis in wild-type mice. Macrophages within the gut express the highest levels of Clec12a. Cytokine and sequencing analysis in Clec12a -/- macrophages revealed heighten inflammation but marked reduction in genes associated with phagocytosis. Indeed, Clec12a -/- macrophages are impaired in their ability to uptake F. rodentium. Purified Clec12a had higher binding to gram-positive organisms such as F. rodentium . Thus, our data identifies Clec12a as an innate immune surveillance mechanism to control expansion of potentially harmful commensals without overt inflammation.

7.
S D Med ; 76(1): 39-41, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36897790

ABSTRACT

INTRODUCTION: Heart disease is the leading cause of death in indigenous peoples, however cardiac surgical outcomes in this group are rarely studied. We hypothesized that complication rates in indigenous peoples undergoing cardiac surgery would be similar to Caucasians. METHODS: From 2014 to 2020, 1,594 patients underwent cardiac surgery; 36 patients were identified as indigenous peoples. Risk factors, intraoperative, and postoperative variables were abstracted from our institution's database. We used the variables of age, BMI, diabetes, and tobacco use to propensity match the indigenous peoples to a group of Caucasian patients, 1:2, resulting in a total of 107 patients. Logistic regression analysis determined differences in complication rates. RESULTS: Within the propensity-matched group, indigenous peoples were more likely to be in renal failure requiring dialysis (16.7 vs. 2.9 percent, p=0.02). Indigenous peoples had a 30-day mortality of 0 percent while Caucasians had a rate of 4.3 percent (p=0.55). Postoperative complication rates were lower in indigenous peoples (22.2 percent) compared to Caucasians (35.3 percent, p=0.17). Logistic multivariate regression analysis of complication rate did not yield race as a contributing variable (odds ratio 2.05; p=0.21). CONCLUSIONS: Following cardiac surgery, indigenous peoples had a mortality rate of 0 percent and a complication rate of 22 percent. Indigenous peoples had a clinically significant lower complication rate than Caucasians, and race did not play a statistically significant role in complication rates.


Subject(s)
Cardiac Surgical Procedures , Diabetes Mellitus , Humans , Indigenous Peoples , Risk Factors , Treatment Outcome
8.
Pharmacogenomics J ; 23(1): 21-27, 2023 01.
Article in English | MEDLINE | ID: mdl-36302979

ABSTRACT

This study evaluated the timing, use, and clinical outcomes of the GeneFolio® Pharmacogenomic Panel in a healthcare setting with patients managed by primary care providers or by psychiatrists. Participants were randomized to receive a pharmacogenetics report at four weeks or 12 weeks. After DNA collection and genetic analysis, pharmacists produced a recommendation report which was given to providers at the randomization week. The four-week group decreased depression severity (PHQ-9 and BDI) faster than the 12-week group (p = 0.0196), and psychiatrists' patients decreased their depression severity faster than primary care patients (PHQ-9 p = 0.0005, BDI p = 0.0218). Mean mental quality of life increased over time (p < 0.0001), but it increased slower for patients taking drugs in the Significant drug-drug-gene interaction category (p = 0.0012). Mental quality of life, depression severity, and clinical outcomes were improved by GeneFolio® pharmacogenomic testing regardless of provider type, with earlier testing improving outcomes sooner.


Subject(s)
Pharmacogenetics , Quality of Life , Humans , Primary Health Care
9.
JCI Insight ; 7(19)2022 10 10.
Article in English | MEDLINE | ID: mdl-36214220

ABSTRACT

Intercellular communication is critical for homeostasis in mammalian systems, including the gastrointestinal (GI) tract. Exosomes are nanoscale lipid extracellular vesicles that mediate communication between many cell types. Notably, the roles of immune cell exosomes in regulating GI homeostasis and inflammation are largely uncharacterized. By generating mouse strains deficient in cell-specific exosome production, we demonstrate deletion of the small GTPase Rab27A in CD11c+ cells exacerbated murine colitis, which was reversible through administration of DC-derived exosomes. Profiling RNAs within colon exosomes revealed a distinct subset of miRNAs carried by colon- and DC-derived exosomes. Among antiinflammatory exosomal miRNAs, miR-146a was transferred from gut immune cells to myeloid and T cells through a Rab27-dependent mechanism, targeting Traf6, IRAK-1, and NLRP3 in macrophages. Further, we have identified a potentially novel mode of exosome-mediated DC and macrophage crosstalk that is capable of skewing gut macrophages toward an antiinflammatory phenotype. Assessing clinical samples, RAB27A, select miRNAs, and RNA-binding proteins that load exosomal miRNAs were dysregulated in ulcerative colitis patient samples, consistent with our preclinical mouse model findings. Together, our work reveals an exosome-mediated regulatory mechanism underlying gut inflammation and paves the way for potential use of miRNA-containing exosomes as a novel therapeutic for inflammatory bowel disease.


Subject(s)
CD11 Antigens , Colitis , Exosomes , Inflammation , Myeloid Cells , Animals , CD11 Antigens/genetics , CD11 Antigens/immunology , Colitis/genetics , Colitis/immunology , Exosomes/genetics , Exosomes/immunology , Inflammation/genetics , Inflammation/immunology , Inflammatory Bowel Diseases/immunology , Intestines/immunology , Lipids , Mammals/genetics , Mammals/immunology , Mice , MicroRNAs/immunology , Monomeric GTP-Binding Proteins/immunology , Myeloid Cells/immunology , NLR Family, Pyrin Domain-Containing 3 Protein/immunology , TNF Receptor-Associated Factor 6/immunology
10.
Expert Rev Gastroenterol Hepatol ; 16(5): 479-486, 2022 May.
Article in English | MEDLINE | ID: mdl-35400291

ABSTRACT

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer mortality in the US. Recent studies have demonstrated survival benefits for FOLFIRINOX (5-FU, leucovorin, irinotecan, and oxaliplatin) and Gem/nab-P (gemcitabine/nab-paclitaxel) over gemcitabine. We aimed to evaluate the clinical outcomes of mPDAC before and after incorporating these newer regimens into the clinical practice. METHODS: A retrospective study of patients with mPDAC at our institution between 2009 and 2018, who were followed up until December 2019. Overall survival (OS) and progression-free survival (PFS) were calculated using Kaplan-Meier survival analysis. Univariate and multivariable Cox regression analyses were used to explore predictors of survival. RESULTS: A total of 394 patients with mPDAC were included: 122 (31%) were diagnosed 2009-2013 and 272 (69%) 2014-2018. In 2009-2013 cohort vs. 2014-2018 cohort, the median OS and PFS were similar (4 vs. 3.6 months, P = 0.5) and (2.3 vs. 2.5 months, P = 0.41), respectively. Age, ECOG-PS >1, serum albumin, neutrophil-to-lymphocyte ratio, and platelets-to-lymphocyte ratio were independent predictors of better OS. CONCLUSIONS: In this study of real-world data, the median OS and PFS for all patients with mPDAC were equivalent before and after incorporating newer treatment regimens into the clinical practice.


Subject(s)
Adenocarcinoma , Pancreatic Neoplasms , Adenocarcinoma/drug therapy , Albumins/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Humans , Paclitaxel/therapeutic use , Pancreatic Neoplasms/pathology , Retrospective Studies , Tertiary Care Centers , Pancreatic Neoplasms
11.
Ann Hepatobiliary Pancreat Surg ; 26(1): 91-97, 2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35168205

ABSTRACT

BACKGROUNDS/AIMS: Metastatic lesions of the pancreas (PMET) account for 1%-5% of all malignant solid pancreatic lesions (SPL). In this study we evaluated the utility of endoscopic ultrasonography with fine needle aspiration (EUS-FNA) in diagnosing PMET. METHODS: Patients who underwent EUS-FNA at a community referral center between 2011-2017 for SPL were identified. Clinical, radiologic, and EUS-FNA features of those with PMET were compared to those with primary solid tumors of the pancreas: pancreatic adenocarcinoma (PDAC) and neuroendocrine tumors (PNET). RESULTS: A total of 191 patients were diagnosed with solid pancreatic malignancy using EUS-FNA: 156 PDAC, 27 PNET, and eight (4.2%) had PMET. Patients with PMET were less likely to have abdominal pain (25.0% vs. 76.3% vs. 48.2%; p < 0.01) or obstructive jaundice (37.5% vs. 58.3% vs. 0%; p < 0.01) compared to PDAC and PNET. Those with PMET were more likely to have mass lesions with/without biliary or pancreatic ductal dilatations (100% vs. 86.5% vs. 85.2%; p < 0.01) and lower CA19-9 (82.5 ± 43.21 U/mL vs. 4,639.30 ± 11,489.68 U/mL vs. 10.50 ± 10.89 U/mL; p < 0.01) compared to PDAC and PNET. Endosonographic features were similar among all groups. Seven (87.5%) patients with PMET had a personal history of malignancy prior to PMET diagnosis. The primary malignancy was renal cell carcinoma in five PMET. CONCLUSIONS: PMET are exceedingly rare, comprising less than 5% of SLP. Patients with PMET are less likely to present with symptoms and mostly identified by surveillance imaging for the primary malignancy.

13.
Cell Mol Neurobiol ; 42(7): 2305-2319, 2022 Oct.
Article in English | MEDLINE | ID: mdl-34037901

ABSTRACT

Defects in the activity of the proteasome or its regulators are linked to several pathologies, including neurodegenerative diseases. We hypothesize that proteasome heterogeneity and its selective partners vary across brain regions and have a significant impact on proteasomal catalytic activities. Using neuronal cell cultures and brain tissues obtained from mice, we compared proteasomal activities from two distinct brain regions affected in neurodegenerative diseases, the striatum and the hippocampus. The results indicated that proteasome activities and their responses to proteasome inhibitors are determined by their subcellular localizations and their brain regions. Using an iodixanol gradient fractionation method, proteasome complexes were isolated, followed by proteomic analysis for proteasomal interaction partners. Proteomic results revealed brain region-specific non-proteasomal partners, including gamma-enolase (ENO2). ENO2 showed more association to proteasome complexes purified from the striatum than to those from the hippocampus. These results highlight a potential key role for non-proteasomal partners of proteasomes regarding the diverse activities of the proteasome complex recorded in several brain regions.


Subject(s)
Proteasome Endopeptidase Complex , Proteomics , Animals , Brain , Mice , Neurons , Phosphopyruvate Hydratase
14.
Front Physiol ; 12: 594605, 2021.
Article in English | MEDLINE | ID: mdl-34400909

ABSTRACT

Negative associations of prenatal tobacco and alcohol exposure (PTE and PAE) on birth outcomes and childhood development have been well documented, but less is known about underlying mechanisms. A possible pathway for the adverse fetal outcomes associated with PTE and PAE is the alteration of fetal autonomic nervous system development. This study assessed PTE and PAE effects on measures of fetal autonomic regulation, as quantified by heart rate (HR), heart rate variability (SD-HR), movement, and HR-movement coupling in a population of fetuses at ≥ 34 weeks gestational age. Participants are a subset of the Safe Passage Study, a prospective cohort study that enrolled pregnant women from clinical sites in Cape Town, South Africa, and the Northern Plains region, United States. PAE was defined by six levels: no alcohol, low quit early, high quit early, low continuous, moderate continuous, and high continuous; while PTE by 4 levels: no smoking, quit early, low continuous, and moderate/high continuous. Linear regression analyses of autonomic measures were employed controlling for fetal sex, gestational age at assessment, site, maternal education, household crowding, and depression. Analyses were also stratified by sleep state (1F and 2F) and site (South Africa, N = 4025, Northern Plains, N = 2466). The final sample included 6491 maternal-fetal-dyad assessed in the third trimester [35.21 ± 1.26 (mean ± SD) weeks gestation]. PTE was associated with a decrease in mean HR in state 2F, in a dose dependent fashion, only for fetuses of mothers who continued smoking after the first trimester. In state 1F, there was a significant increase in mean HR in fetuses whose mother quit during the first trimester. This effect was driven by the Norther Plains cohort. PTE was also associated with a significant reduction in fetal movement in the most highly exposed group. In South Africa a significant increase in mean HR both for the high quit early and the high continuous group was observed. In conclusion, this investigation addresses a critical knowledge gap regarding the relationship between PTE and PAE and fetal autonomic regulation. We believe these results can contribute to elucidating mechanisms underlying risk for adverse outcomes.

15.
Transplant Proc ; 53(6): 1872-1879, 2021.
Article in English | MEDLINE | ID: mdl-34246475

ABSTRACT

BACKGROUND: Indigenous people experience higher rates of end-stage renal disease as well as negative predictive factors that undermine kidney transplantation (KT) success. Despite these inequalities, data suggest that short-term outcomes are comparable to those of other groups, but few studies have examined this effect in the Northern Great Plains (NGP) region. METHODS: We performed a retrospective database review to determine outcomes of KT in Indigenous people of the NGP. White and Indigenous people receiving a KT between 2000 and 2018 at a single center were examined. RESULTS: A total of 622 KT recipients were included (117 Indigenous and 505 White). Indigenous patients were more likely to smoke, have diabetes, have higher immunologic risk, receive fewer living donor kidneys, and have longer waitlist times. In the 5 years after KT there were no significant differences in renal function, rejection events, cancer, graft failure, or patient survival. At 10 years posttransplant, Indigenous patients had twice the all-cause graft failure (odds ratio = 2.06; 95% confidence interval, 1.25-3.39) and half the survival rate (odds ratio = 0.47; 95% confidence interval, 0.29-0.76); however, this effect was not maintained once the effects of race, sex, smoking status, diabetes, preemptive transplant, high panel reactive antibody status, and transplant type were adjusted for. CONCLUSIONS: KT outcomes in Indigenous patients in the NGP region are similar to those of White patients 5 years posttransplant, with differences emerging at 10 years that could be diminished with greater emphasis on correcting modifiable risk factors.


Subject(s)
Kidney Failure, Chronic , Kidney Transplantation , Graft Rejection , Graft Survival , Humans , Indigenous Peoples , Kidney Failure, Chronic/surgery , Kidney Transplantation/adverse effects , Living Donors , Retrospective Studies , Treatment Outcome , United States
16.
Nat Commun ; 12(1): 2620, 2021 05 11.
Article in English | MEDLINE | ID: mdl-33976173

ABSTRACT

Tumor associated macrophage responses are regulated by distinct metabolic states that affect their function. However, the ability of specific signals in the local tumor microenvironment to program macrophage metabolism remains under investigation. Here, we identify NAMPT, the rate limiting enzyme in NAD salvage synthesis, as a target of STAT1 during cellular activation by interferon gamma, an important driver of macrophage polarization and antitumor responses. We demonstrate that STAT1 occupies a conserved element within the first intron of Nampt, termed Nampt-Regulatory Element-1 (NRE1). Through disruption of NRE1 or pharmacological inhibition, a subset of M1 genes is sensitive to NAMPT activity through its impact on glycolytic processes. scRNAseq is used to profile in vivo responses by NRE1-deficient, tumor-associated leukocytes in melanoma tumors through the creation of a unique mouse strain. Reduced Nampt and inflammatory gene expression are present in specific myeloid and APC populations; moreover, targeted ablation of NRE1 in macrophage lineages results in greater tumor burden. Finally, elevated NAMPT expression correlates with IFNγ responses and melanoma patient survival. This study identifies IFN and STAT1-inducible Nampt as an important factor that shapes the metabolic program and function of tumor associated macrophages.


Subject(s)
Cytokines/genetics , Melanoma/genetics , Nicotinamide Phosphoribosyltransferase/genetics , STAT1 Transcription Factor/metabolism , Skin Neoplasms/genetics , Tumor-Associated Macrophages/immunology , Animals , Cytokines/metabolism , Disease Models, Animal , Enhancer Elements, Genetic , Female , Gene Expression Regulation, Neoplastic/immunology , HEK293 Cells , Humans , Interferon-gamma/metabolism , Kaplan-Meier Estimate , Male , Melanoma/immunology , Melanoma/mortality , Melanoma/pathology , Mice , Mice, Knockout , Nicotinamide Phosphoribosyltransferase/metabolism , RAW 264.7 Cells , RNA-Seq , Receptors, Interferon/genetics , Receptors, Interferon/metabolism , Signal Transduction/genetics , Signal Transduction/immunology , Skin Neoplasms/immunology , Skin Neoplasms/mortality , Skin Neoplasms/pathology , THP-1 Cells , Tumor-Associated Macrophages/metabolism , Up-Regulation , Warburg Effect, Oncologic , Interferon gamma Receptor
17.
J Cancer ; 12(9): 2472-2487, 2021.
Article in English | MEDLINE | ID: mdl-33854609

ABSTRACT

Targeting the ubiquitin-proteasome system (UPS) - in particular, the proteasome complex - has emerged as an attractive novel cancer therapy. While several proteasome inhibitors have been successfully approved by the Food and Drug Administration for the treatment of hematological malignancies, the clinical efficacy of these inhibitors is unexpectedly lower in the treatment of solid tumors due to the functional and structural heterogeneity of proteasomes in solid tumors. There are ongoing trials to examine the effectiveness of compound and novel proteasome inhibitors that can target solid tumors either alone or in combination with conventional chemotherapeutic agents. The modest therapeutic efficacy of proteasome inhibitors such as bortezomib in solid malignancies demands further research to clarify the exact effects of these proteasome inhibitors on different proteasomes present in cancer cells. The structural, cellular localization and functional analysis of the proteasome complexes in solid tumors originated from different tissues provides new insights into the diversity of proteasomes' responses to inhibitors. In this study, we used an optimized iodixanol gradient ultracentrifugation to purify a native form of proteasome complexes with their intact associated protein partners enriched within distinct cellular compartments. It is therefore possible to isolate proteasome subcomplexes with far greater resolution than sucrose or glycerol fractionations. We have identified differences in the catalytic activities, subcellular distribution, and inhibitor sensitivity of cytoplasmic proteasomes isolated from human colon, breast, and pancreatic cancer cell lines. Our developed techniques and generated results will serve as a valuable guideline for investigators developing a new generation of proteasome inhibitors as an effective targeted therapy for solid tumors.

18.
Front Neurol ; 12: 636668, 2021.
Article in English | MEDLINE | ID: mdl-33776893

ABSTRACT

Pre-natal exposures to nicotine and alcohol are known risk factors for sudden infant death syndrome (SIDS), the leading cause of post-neonatal infant mortality. Here, we present data on nicotinic receptor binding, as determined by 125I-epibatidine receptor autoradiography, in the brainstems of infants dying of SIDS and of other known causes of death collected from the Safe Passage Study, a prospective, multicenter study with clinical sites in Cape Town, South Africa and 5 United States sites, including 2 American Indian Reservations. We examined 15 pons and medulla regions related to cardiovascular control and arousal in infants dying of SIDS (n = 12) and infants dying from known causes (n = 20, 10 pre-discharge from time of birth, 10 post-discharge). Overall, there was a developmental decrease in 125I-epibatidine binding with increasing postconceptional age in 5 medullary sites [raphe obscurus, gigantocellularis, paragigantocellularis, centralis, and dorsal accessory olive (p = 0.0002-0.03)], three of which are nuclei containing serotonin cells. Comparing SIDS with post-discharge known cause of death (post-KCOD) controls, we found significant decreased binding in SIDS in the nucleus pontis oralis (p = 0.02), a critical component of the cholinergic ascending arousal system of the rostral pons (post-KCOD, 12.1 ± 0.9 fmol/mg and SIDS, 9.1 ± 0.78 fmol/mg). In addition, we found an effect of maternal smoking in SIDS (n = 11) combined with post-KCOD controls (n = 8) on the raphe obscurus (p = 0.01), gigantocellularis (p = 0.02), and the paragigantocellularis (p = 0.002), three medullary sites found in this study to have decreased binding with age and found in previous studies to have abnormal indices of serotonin neurotransmission in SIDS infants. At these sites, 125I-epibatidine binding increased with increasing cigarettes per week. We found no effect of maternal drinking on 125I-epibatidine binding at any site measured. Taken together, these data support changes in nicotinic receptor binding related to development, cause of death, and exposure to maternal cigarette smoking. These data present new evidence in a prospective study supporting the roles of developmental factors, as well as adverse exposure on nicotinic receptors, in serotonergic nuclei of the rostral medulla-a finding that highlights the interwoven and complex relationship between acetylcholine (via nicotinic receptors) and serotonergic neurotransmission in the medulla.

19.
J Clin Immunol ; 41(5): 1031-1047, 2021 07.
Article in English | MEDLINE | ID: mdl-33656624

ABSTRACT

PURPOSE: The human antibody repertoire forms in response to infections, the microbiome, vaccinations, and environmental exposures. The specificity of such antibody responses was compared among a cohort of toddlers to identify differences between seropositive versus seronegative responses. METHODS: An assessment of the serum IgM and IgG antibody reactivities in 197 toddlers of 1- and 2-years of age was performed with a microfluidic array containing 110 distinct antigens. Longitudinal profiling was done from years 1 to 2. Seropositivity to RNA and DNA viruses; bacteria; live attenuated, inactive, and subunit vaccines; and autoantigens was compared. A stratification was developed based on quantitative variations in the IgG responses. Clinical presentations and previously known genetic risk alleles for various immune system conditions were investigated in relation to IgG responses. RESULTS: IgG reactivities stratified toddlers into low, moderate, and high responder groups. The high group (17%) had elevated IgG responses to multiple RNA and DNA viruses (e.g., respiratory syncytial virus, Epstein-Barr virus, adenovirus, Coxsackievirus) and this correlated with increased responses to live attenuated viral vaccines and certain autoantigens. This high group was more likely to be associated with gestational diabetes and an older age. Genetic analyses identified polymorphisms in the IL2RB, TNFSF4, and INS genes in two high responder individuals that were associated with their elevated cytokine levels and clinical history of eczema and asthma. CONCLUSION: Serum IgG profiling of toddlers reveals correlations between the magnitude of the antibody responses towards viruses, live attenuated vaccines, and certain autoantigens. A low responder group had much weaker responses overall, including against vaccines. The serum antibody screen also identifies individuals with IgG responses to less common infections (West Nile virus, parvovirus, tuberculosis). The characterization of the antibody responses in combination with the identification of genetic risk alleles provides an opportunity to identify children with increased risk of clinical disease.


Subject(s)
Antibodies, Viral/blood , Autoantigens/immunology , Bacteria/immunology , DNA Viruses/immunology , Immunoglobulin G/blood , RNA Viruses/immunology , Vaccines/immunology , Child, Preschool , Cytokines/blood , Female , Genotype , Humans , Immunoglobulin M/blood , Infant , Male , Microfluidic Analytical Techniques
20.
Front Immunol ; 11: 1797, 2020.
Article in English | MEDLINE | ID: mdl-32922393

ABSTRACT

Macrophages are key cells of the innate immune system with functional roles in both homeostatic maintenance of self-tissues and inflammatory responses to external stimuli, including infectious agents. Recent advances in metabolic research have revealed that macrophage functions rely upon coordinated metabolic programs to regulate gene expression, inflammation, and other important cellular processes. Polarized macrophages adjust their use of nutrients such as glucose and amino acids to meet their changing metabolic needs, and this in turn supports the functions of the activated macrophage. Metabolic and inflammatory processes have been widely studied, and a crucial role for their regulation at the post-transcriptional level by microRNAs (miRNAs) has been identified. miRNAs govern many facets of macrophage biology, including direct targeting of metabolic regulators and inflammatory pathways. This review will integrate emerging data that support an interplay between miRNAs and metabolism during macrophage inflammatory responses, highlighting critical miRNAs and miRNA families. Additionally, we will address the implications of these networks for human disease and discuss emerging areas of research in this field.


Subject(s)
Inflammation/immunology , Inflammation/metabolism , Macrophage Activation/immunology , Macrophages/immunology , Macrophages/metabolism , MicroRNAs/immunology , Animals , Humans , Metabolic Networks and Pathways/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...