Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
J Biomech ; 115: 110126, 2021 01 22.
Article in English | MEDLINE | ID: mdl-33359919

ABSTRACT

The knee meniscus is a soft fibrous tissue with a high incidence of injury in older populations. The objective of this study was to determine the effect of age on the failure behavior of human knee meniscus when applying uniaxial tensile loads parallel or perpendicular to the primary circumferential fiber orientation. Two age groups were tested: under 40 and over 65 years old. We paired high-speed video with digital image correlation to quantify for the first time the planar strains occurring in the tear region at precise time points, including at ultimate tensile stress, when the tissue begins losing load-bearing capacity. On average, older meniscus specimens loaded parallel to the fiber axis had approximately one-third less ultimate tensile strain and absorbed 60% less energy to failure within the tear region than younger specimens (p < 0.05). Older specimens also had significantly reduced strength and material toughness when loaded perpendicular to the fibers (p < 0.05). These age-related changes indicate a loss of collagen fiber extensibility and weakening of the non-fibrous matrix with age. In addition, we found that when loaded perpendicular to the circumferential fibers, tears propagated near the planes of maximum tensile stress and strain. Whereas when loaded parallel to the circumferential fibers, tears propagated oblique to the loading axis, closer to the planes of maximum shear stress and strain. Our experimental results can assist the selection of valid failure criteria for meniscus, and provide insight into the effect of age on the failure mechanisms of soft fibrous tissue.


Subject(s)
Meniscus , Aged , Humans , Knee Joint , Menisci, Tibial , Rupture , Stress, Mechanical , Tensile Strength , Weight-Bearing
2.
J Biomech ; 112: 110011, 2020 11 09.
Article in English | MEDLINE | ID: mdl-32961425

ABSTRACT

The failure behavior and mechanical properties of soft tissue can be characterized by conducting uniaxial tensile tests on small sectioned specimens, called test coupons. An ideal coupon geometry for tensile testing is a dumbbell shape (dog-bone), yet the cost and time required to fabricate custom steel punches to cut dumbbell-shaped coupons has hindered their universal application in biomechanics research. In this study, we developed an economical and reliable cutting device that can extract dumbbell-shaped coupons from soft biological tissue. The novel device, called Print-A-Punch, uses three-dimensional (3D) printed components in combination with standard fasteners and replaceable flexible razors. We identified design factors that influence the dimensional accuracy and symmetry of elastomer coupons extracted using this cutting device, and demonstrated its use on bovine meniscus. Advantages of this 3D printed device include a fast fabrication time, low material cost, good accuracy, replaceable blades, and an ability to scale coupon dimensions for specific tissues and experiments. By reducing the cost and time to cut accurate dumbbell-shaped coupons, this technology can facilitate the broad adoption of standard test methods that improve the quality and reproducibility of tensile tests in soft biological tissue. Researchers can freely download a set of STL files from this study to build their own Print-A-Punch device (https://boisestate.edu/coen-ntm/technology/print-a-punch).


Subject(s)
Meniscus , Animals , Biomechanical Phenomena , Cattle , Dogs , Materials Testing , Printing, Three-Dimensional , Reproducibility of Results , Tensile Strength
SELECTION OF CITATIONS
SEARCH DETAIL
...