Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 116(31): 15469-15474, 2019 07 30.
Article in English | MEDLINE | ID: mdl-31311867

ABSTRACT

BCL-2 family proteins regulate the mitochondrial apoptotic pathway. BOK, a multidomain BCL-2 family protein, is generally believed to be an adaptor protein similar to BAK and BAX, regulating the mitochondrial permeability transition during apoptosis. Here we report that BOK is a positive regulator of a key enzyme involved in uridine biosynthesis; namely, uridine monophosphate synthetase (UMPS). Our data suggest that BOK expression enhances UMPS activity, cell proliferation, and chemosensitivity. Genetic deletion of Bok results in chemoresistance to 5-fluorouracil (5-FU) in different cell lines and in mice. Conversely, cancer cells and primary tissues that acquire resistance to 5-FU down-regulate BOK expression. Furthermore, we also provide evidence for a role for BOK in nucleotide metabolism and cell cycle regulation. Our results have implications in developing BOK as a biomarker for 5-FU resistance and have the potential for the development of BOK-mimetics for sensitizing 5-FU-resistant cancers.


Subject(s)
Proto-Oncogene Proteins c-bcl-2/metabolism , Uridine/metabolism , Animals , Apoptosis/drug effects , Biomarkers, Tumor/metabolism , Cell Proliferation/drug effects , DNA Damage , Drug Resistance, Neoplasm/drug effects , Fluorouracil/pharmacology , Mammals , Mice , Multienzyme Complexes/metabolism , Orotate Phosphoribosyltransferase/metabolism , Orotidine-5'-Phosphate Decarboxylase/metabolism , Protein Binding/drug effects , Protein Domains , Proto-Oncogene Proteins c-bcl-2/chemistry , Tumor Suppressor Protein p53/metabolism
2.
Methods Enzymol ; 562: 205-23, 2015.
Article in English | MEDLINE | ID: mdl-26412653

ABSTRACT

Here, we review recent studies aimed at defining the importance of quaternary structure to a model oligomeric enzyme, dihydrodipicolinate synthase. This will illustrate the complementary and synergistic outcomes of coupling the techniques of analytical ultracentrifugation with enzyme kinetics, in vitro mutagenesis, macromolecular crystallography, small angle X-ray scattering, and molecular dynamics simulations, to demonstrate the role of subunit self-association in facilitating protein dynamics and enzyme function. This multitechnique approach has yielded new insights into the molecular evolution of protein quaternary structure.


Subject(s)
Bacterial Proteins/chemistry , Hydro-Lyases/chemistry , Plant Proteins/chemistry , Bacterial Proteins/isolation & purification , Evolution, Molecular , Hydro-Lyases/isolation & purification , Kinetics , Molecular Dynamics Simulation , Plant Proteins/isolation & purification , Protein Multimerization , Protein Structure, Quaternary , Protein Subunits , Scattering, Small Angle , Ultracentrifugation , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...