Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Ageing Res Rev ; 100: 102386, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38969143

ABSTRACT

Neurodegenerative disorders (NDs) such as Alzheimer's disease, Parkinson's disease, Huntington's disease, multiple sclerosis, and amyotrophic lateral sclerosis are severe and life-threatening conditions in which significant damage of functional neurons occurs to produce psycho-motor malfunctions. NDs are an important cause of death in the elderly population worldwide. These disorders are commonly associated with the progression of age, oxidative stress, and environmental pollutants, which are the major etiological factors. Abnormal aggregation of specific proteins such as α-synuclein, amyloid-ß, huntingtin, and tau, and accumulation of the associated oligomers in neurons are the hallmark pathological features of NDs. Existing therapeutic options for NDs are only symptomatic relief and do not address root-causing factors, such as protein aggregation, oxidative stress, and neuroinflammation. Cannabidiol (CBD) is a non-psychotic natural cannabinoid obtained from Cannabis sativa that possesses multiple pharmacological actions, including antioxidant, anti-inflammatory, and neuroprotective effects in various NDs and other neurological disorders both in vitro and in vivo. CBD has gained attention as a promising drug candidate for the management of neurodegenerative disorders, such as Alzheimer's disease and Parkinson's disease, by inhibiting protein aggregation, free radicals, and neuroinflammation. In parallel, CBD has shown positive results in other neurological disorders, such as epilepsy, depression, schizophrenia, and anxiety, as well as adjuvant treatment with existing standard therapeutic agents. Hence, the present review focuses on exploring the possible molecular mechanisms in controlling various neurological disorders as well as the clinical applications of CBD in NDs including epilepsy, depression and anxiety. In this way, the current review will serve as a standalone reference for the researchers working in this area.

2.
Mol Neurobiol ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38780722

ABSTRACT

Plants and their derived phytochemicals have a long history of treating a wide range of illnesses for several decades. They are believed to be the origin of a diverse array of medicinal compounds. One of the compounds found in kudzu root is puerarin, a isoflavone glycoside commonly used as an alternative medicine to treat various diseases. From a biological perspective, puerarin can be described as a white needle crystal with the chemical name of 7-hydroxy-3-(4-hydroxyphenyl)-1-benzopyran-4-one-8-D-glucopyranoside. Besides, puerarin is sparingly soluble in water and produces no color or light yellow solution. Multiple experimental and clinical studies have confirmed the significant therapeutic effects of puerarin. These effects span a wide range of pharmacological effects, including neuroprotection, hepatoprotection, cardioprotection, immunomodulation, anticancer properties, anti-diabetic properties, anti-osteoporosis properties, and more. Puerarin achieves these effects by interacting with various cellular and molecular pathways, such as MAPK, AMPK, NF-κB, mTOR, ß-catenin, and PKB/Akt, as well as different receptors, enzymes, and growth factors. The current review highlights the molecular mechanism of puerarin as a neuroprotective agent in the treatment of various neurodegenerative and neurological diseases. Extensive cellular, animal, and clinical research has provided valuable insights into its effectiveness in conditions such as Alzheimer's disease, Parkinson's disease, epilepsy, cerebral stroke, depression, and more.

3.
Microb Pathog ; 192: 106687, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38750773

ABSTRACT

Bovine mastitis (BM) is the most common bacterial mediated inflammatory disease in the dairy cattle that causes huge economic loss to the dairy industry due to decreased milk quality and quantity. Milk is the essential food in the human diet, and rich in crucial nutrients that helps in lowering the risk of diseases like hypertension, cardiovascular diseases and type 2 diabetes. The main causative agents of the disease include various gram negative, and positive bacteria, along with other risk factors such as udder shape, age, genetic, and environmental factors also contributes much for the disease. Currently, antibiotics, immunotherapy, probiotics, dry cow, and lactation therapy are commonly recommended for BM. However, these treatments can only decrease the rise of new cases but can't eliminate the causative agents, and they also exhibit several limitations. Hence, there is an urgent need of a potential source that can generate a typical and ideal treatment to overcome the limitations and eliminate the pathogens. Among the various sources, medicinal plants and its derived products always play a significant role in drug discovery against several diseases. In addition, they are also known for its low toxicity and minimum resistance features. Therefore, plants and its compounds that possess anti-inflammatory and anti-bacterial properties can serve better in bovine mastitis. In addition, the plants that are serving as a food source and possessing pharmacological properties can act even better in bovine mastitis. Hence, in this evidence-based study, we particularly review the dietary medicinal plants and derived products that are proven for anti-inflammatory and anti-bacterial effects. Moreover, the role of each dietary plant and its compounds along with possible role in the management of bovine mastitis are delineated. In this way, this article serves as a standalone source for the researchers working in this area to help in the management of BM.


Subject(s)
Anti-Bacterial Agents , Anti-Inflammatory Agents , Mastitis, Bovine , Plants, Medicinal , Animals , Cattle , Mastitis, Bovine/microbiology , Mastitis, Bovine/drug therapy , Mastitis, Bovine/prevention & control , Plants, Medicinal/chemistry , Anti-Inflammatory Agents/pharmacology , Female , Anti-Bacterial Agents/pharmacology , Humans , Milk , Diet/veterinary , Plant Extracts/pharmacology , Plant Extracts/therapeutic use
4.
J Alzheimers Dis ; 98(4): 1169-1179, 2024.
Article in English | MEDLINE | ID: mdl-38607755

ABSTRACT

Alzheimer's disease (AD) is a complex neurodegenerative disorder characterized by the accumulation of neurofibrillary tangles and amyloid-ß plaques. Recent research has unveiled the pivotal role of insulin signaling dysfunction in the pathogenesis of AD. Insulin, once thought to be unrelated to brain function, has emerged as a crucial factor in neuronal survival, synaptic plasticity, and cognitive processes. Insulin and the downstream insulin signaling molecules are found mainly in the hippocampus and cortex. Some molecules responsible for dysfunction in insulin signaling are GSK-3ß, Akt, PI3K, and IRS. Irregularities in insulin signaling or insulin resistance may arise from changes in the phosphorylation levels of key molecules, which can be influenced by both stimulation and inactivity. This, in turn, is believed to be a crucial factor contributing to the development of AD, which is characterized by oxidative stress, neuroinflammation, and other pathological hallmarks. Furthermore, this route is known to be indirectly influenced by Nrf2, NF-κB, and the caspases. This mini-review delves into the intricate relationship between insulin signaling and AD, exploring how disruptions in this pathway contribute to disease progression. Moreover, we examine recent advances in drug delivery systems designed to target insulin signaling for AD treatment. From oral insulin delivery to innovative nanoparticle approaches and intranasal administration, these strategies hold promise in mitigating the impact of insulin resistance on AD. This review consolidates current knowledge to shed light on the potential of these interventions as targeted therapeutic options for AD.


Subject(s)
Alzheimer Disease , Insulin Resistance , Humans , Alzheimer Disease/pathology , Insulin/metabolism , Insulin Resistance/physiology , Glycogen Synthase Kinase 3 beta , Amyloid beta-Peptides/metabolism , Drug Delivery Systems
5.
Ageing Res Rev ; 98: 102224, 2024 07.
Article in English | MEDLINE | ID: mdl-38346505

ABSTRACT

Alzheimer's disease (AD) is a highly prevalent neurodegenerative condition that has devastating effects on individuals, often resulting in dementia. AD is primarily defined by the presence of extracellular plaques containing insoluble ß-amyloid peptide (Aß) and neurofibrillary tangles (NFTs) composed of hyperphosphorylated tau protein (P-tau). In addition, individuals afflicted by these age-related illnesses experience a diminished state of health, which places significant financial strain on their loved ones. Several risk factors play a significant role in the development of AD. These factors include genetics, diet, smoking, certain diseases (such as cerebrovascular diseases, obesity, hypertension, and dyslipidemia), age, and alcohol consumption. Age-related factors are key contributors to the development of vascular-based neurodegenerative diseases such as AD. In general, the process of aging can lead to changes in the immune system's responses and can also initiate inflammation in the brain. The chronic inflammation and the inflammatory mediators found in the brain play a crucial role in the dysfunction of the blood-brain barrier (BBB). Furthermore, maintaining BBB integrity is of utmost importance in preventing a wide range of neurological disorders. Therefore, in this review, we discussed the role of age and its related factors in the breakdown of the blood-brain barrier and the development of AD. We also discussed the importance of different compounds, such as those with anti-aging properties, and other compounds that can help maintain the integrity of the blood-brain barrier in the prevention of AD. This review builds a strong correlation between age-related factors, degradation of the BBB, and its impact on AD.


Subject(s)
Aging , Alzheimer Disease , Blood-Brain Barrier , Humans , Alzheimer Disease/metabolism , Blood-Brain Barrier/metabolism , Aging/metabolism , Aging/physiology , Animals , Risk Factors
6.
Phys Eng Sci Med ; 47(1): 49-59, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37843767

ABSTRACT

Kilovoltage therapy units are used for superficial radiotherapy treatment delivery. Peer reviewed studies for MV linear accelerators describe tolerances to dosimetrically match multiple linear accelerators enabling patient treatment on any matched machine. There is an absence of literature on using a single planning data set for multiple kilovoltage units which have limited ability for beam adjustment. This study reviewed kilovoltage dosimetry and treatment planning scenarios to evaluate the feasibility of using ACPSEM annual QA tolerances to determine whether two units (of the same make and model) were dosimetrically matched. The dosimetric characteristics, such as measured half value layer (HVL), percentage depth dose (PDD), applicator factor and output variation with stand-off distance for each kV unit were compared to assess the agreement. Independent planning data based on the measured HVL for each beam energy from each kV unit was prepared. Monitor unit (MU) calculations were performed using both sets of planning data for approximately 200 clinical scenarios and compared with an overall agreement between units of < 2%. Additionally, a dosimetry measurement comparison was completed at each site for a subset of nine scenarios. All machine characterisation measurements were within the ACPSEM Annual QA tolerances, and dosimetric testing was within 2.5%. This work demonstrates that using a single set of planning data for two kilovoltage units is feasible, resulting in a clinical impact within published uncertainty.


Subject(s)
Radiometry , Radiotherapy Planning, Computer-Assisted , Humans , Radiotherapy Planning, Computer-Assisted/methods , Phantoms, Imaging , Particle Accelerators , Uncertainty
7.
Gels ; 9(9)2023 Aug 26.
Article in English | MEDLINE | ID: mdl-37754369

ABSTRACT

A promising controlled drug delivery system has been developed based on polymeric buccoadhesive bilayered formulation that uses a drug-free backing layer and a polymeric hydrophilic gel buccoadhesive core layer containing nifedipine. The DSC thermogravimetric analysis confirms the drug's entrapment in the gel layer and reveals no evidence of a potential interaction. Various ratios of bioadhesive polymers, including HPMC K100, PVP K30, SCMC, and CP 934, were combined with EC as an impermeable backing layer to ensure unidirectional drug release towards the buccal mucosa. The polymeric compositions of hydrophilic gel-natured HPMC, SCMC, and CP formed a matrix layer by surrounding the core nifedipine during compression. Preformulation studies were performed for all of the ingredients in order to evaluate their physical and flow characteristics. Ex vivo buccoadhesive strength, surface pH, swelling index, in vitro and in vivo drug release, and ex vivo permeation investigations were performed to evaluate the produced gel-based system. Rapid temperature variations had no appreciable impact on the substance's physical properties, pharmacological content, or buccoadhesive strength during stability testing using actual human saliva. It was clear from a histological examination of the ex vivo mucosa that the developed system did not cause any irritation or inflammation at the site of administration. The formulation NT5 was the best one, with a correlation coefficient of 0.9966. The in vitro and in vivo drug release profiles were well correlated, and they mimic the in vitro drug release pattern via the biological membrane. Thus, the developed gel-based formulation was found to be novel, stable, and useful for the targeted delivery of nifedipine.

8.
Toxicon ; 233: 107243, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37567418

ABSTRACT

It is the first report on leaves of Grewia bracteata Roth for its anticancer effect. In this study, three polarity-guided solvent extracts of Grewia bracteata leaves from n-hexane (GLH), ethyl acetate (GLE), and methanol (GLM) were screened for anticancer effects on HeLa, HCT-116, MCF-7, HCT-116 p53-/- and PC-3 cells via methyl thiazoldiphenyltetrazolium bromide (MTT) assay. Based on the results, GLM was fractionated, and the obtained fractions were tested on HCT-116 cells. Further, FT-IR, HPLC analysis, clonogenic assay, wound healing assay, DCFDA, and cell cycle experiments were conducted on HCT-116 cells. The extracts from methanol (GLM) and ethyl-acetate (GLE) demonstrated a more selective and promising inhibition on HCT-116 cells than others. Notably, GLM recorded superior inhibition on HCT-116 p53-/- than GLE. Amongst, the methanol column fraction (GMCF) showed prominent inhibition on HCT-116 (IC50:63.55 ± 0.61 µg/ml) and HCT-116 p53-/- (IC50: 84.51 ± 0.58 µg/ml) cells. Further, the test on normal cells (NKE) revealed minimal toxicity of GMCF. The phytochemical test, FT-IR, HPLC, and LC-HRMS analyses confirmed the high abundance of polyphenolic acid/polyphenols in GMCF. Further, the clonogenic and wound healing assays on HCT-116 cells were also performed. Later, the probable cell death mechanism was identified using DCFDA and cell cycle experiments. These experiments disclosed that GMCF induced HCT-116 cell death was probably due to reactive oxygen species (ROS) upregulation and cells cycle arrest at SubG0 phase. It inferred that the activity is most probably p53 independent, a tumor suppressor gene responsible for drug resistance in colon cancer.


Subject(s)
Colonic Neoplasms , Grewia , Humans , Reactive Oxygen Species/metabolism , Methanol , Tumor Suppressor Protein p53 , Genes, p53 , Spectroscopy, Fourier Transform Infrared , Apoptosis , Colonic Neoplasms/drug therapy , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Cell Line, Tumor , Plant Extracts/pharmacology
9.
Front Endocrinol (Lausanne) ; 14: 1201198, 2023.
Article in English | MEDLINE | ID: mdl-37560308

ABSTRACT

Colorectal cancer (CRC) is one of the most deaths causing diseases worldwide. Several risk factors including hormones like insulin and insulin like growth factors (e.g., IGF-1) have been considered responsible for growth and progression of colon cancer. Though there is a huge advancement in the available screening as well as treatment techniques for CRC. There is no significant decrease in the mortality of cancer patients. Moreover, the current treatment approaches for CRC are associated with serious challenges like drug resistance and cancer re-growth. Given the severity of the disease, there is an urgent need for novel therapeutic agents with ideal characteristics. Several pieces of evidence suggested that natural products, specifically medicinal plants, and derived phytochemicals may serve as potential sources for novel drug discovery for various diseases including cancer. On the other hand, cancer cells like colon cancer require a high basal level of reactive oxygen species (ROS) to maintain its own cellular functions. However, excess production of intracellular ROS leads to cancer cell death via disturbing cellular redox homeostasis. Therefore, medicinal plants and derived phytocompounds that can enhance the intracellular ROS and induce apoptotic cell death in cancer cells via modulating various molecular targets including IGF-1 could be potential therapeutic agents. Alkaloids form a major class of such phytoconstituents that can play a key role in cancer prevention. Moreover, several preclinical and clinical studies have also evidenced that these compounds show potent anti-colon cancer effects and exhibit negligible toxicity towards the normal cells. Hence, the present evidence-based study aimed to provide an update on various alkaloids that have been reported to induce ROS-mediated apoptosis in colon cancer cells via targeting various cellular components including hormones and growth factors, which play a role in metastasis, angiogenesis, proliferation, and invasion. This study also provides an individual account on each such alkaloid that underwent clinical trials either alone or in combination with other clinical drugs. In addition, various classes of phytochemicals that induce ROS-mediated cell death in different kinds of cancers including colon cancer are discussed.


Subject(s)
Alkaloids , Colonic Neoplasms , Humans , Reactive Oxygen Species/metabolism , Insulin-Like Growth Factor I , Colonic Neoplasms/drug therapy , Colonic Neoplasms/metabolism , Alkaloids/therapeutic use , Hormones/therapeutic use
10.
BMC Complement Med Ther ; 23(1): 33, 2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36737760

ABSTRACT

BACKGROUND: Colorectal cancer (CRC) is the second most mortality rate causing disease after lung cancer. Though there is a significant improvement in the treatment schedule offered to CRC. However, there is no notable decrease in terms of cases as well as death rate. Hence, there is an urgent need to discover novel cancer therapeutics to treat CRC. Since ancient times, the use of phytochemicals has drawn huge attention as chemo-preventive and chemotherapeutic agents. Earlier studies on Tinospora sinensis (TS) revealed the cytotoxic effect on human colorectal carcinoma (HCT-116) cells, yet the mechanism is to be uncovered. Therefore, the present study was designed to study the cell death mechanism of TS in HCT-116 cells. METHOD: Different extracts such as n-hexane, ethyl acetate, and ethanol extracts from the root part of TS were prepared using a cold maceration process. The extracts were screened against cancer cell lines by methyl thiazoldiphenyltetrazolium bromide (MTT) assay. From the result, the most active extract was subjected to gas chromatography-mass spectrometry (GC-MS) and Fourier-Transform infrared spectroscopy (FTIR) analyses to identify the major constituents. Finally, the mechanism of cytotoxicity to cancer cells for the most active extract was evaluated using various experiments such as cell cycle analysis, Annexin-V assay, and Western blot. RESULTS: The results from the MTT assay indicated that the n-hexane extract of TS inhibits the growth of HCT-116 cells more effectively than other cancer cells like Henrietta Lacks cervical cancer cells (Hela), and Michigan cancer foundation-breast cancer (MCF-7). The GC-MS and FT-IR analyses revealed the presence of alkaloids in the n-hexane extract and were responsible for the apoptosis activity in HCT-cells via reactive oxygen species (ROS) generation, and phosphoinositide 3-kinase (PI3K)/ protein Kinase B (Akt)/ mammalian target of rapamycin (mTOR) down-regulation. CONCLUSION: This study concludes that this finding is unique of its kind, and for the first time. The anticancer effect of TS root is specific to colon cancer cells (HCT-116). This distinctive finding helps the researchers to investigate further, and to identify a novel source for anti-colon cancer drug candidates in near future.


Subject(s)
Alkaloids , Antineoplastic Agents , Breast Neoplasms , Colonic Neoplasms , Tinospora , Humans , Female , Reactive Oxygen Species/metabolism , Phosphatidylinositol 3-Kinases , Spectroscopy, Fourier Transform Infrared , Cell Death , Antineoplastic Agents/pharmacology , Colonic Neoplasms/drug therapy , Apoptosis , TOR Serine-Threonine Kinases , Alkaloids/pharmacology
11.
Cancers (Basel) ; 15(3)2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36765950

ABSTRACT

Colorectal cancer (CRC) is the third most diagnosed and second leading cause of cancer-related death worldwide. Limitations with existing treatment regimens have demanded the search for better treatment options. Different phytochemicals with promising anti-CRC activities have been reported, with the molecular mechanism of actions still emerging. This review aims to summarize recent progress on the study of natural phenolic compounds in ameliorating CRC using in vivo models. This review followed the guidelines of the Preferred Reporting Items for Systematic Reporting and Meta-Analysis. Information on the relevant topic was gathered by searching the PubMed, Scopus, ScienceDirect, and Web of Science databases using keywords, such as "colorectal cancer" AND "phenolic compounds", "colorectal cancer" AND "polyphenol", "colorectal cancer" AND "phenolic acids", "colorectal cancer" AND "flavonoids", "colorectal cancer" AND "stilbene", and "colorectal cancer" AND "lignan" from the reputed peer-reviewed journals published over the last 20 years. Publications that incorporated in vivo experimental designs and produced statistically significant results were considered for this review. Many of these polyphenols demonstrate anti-CRC activities by inhibiting key cellular factors. This inhibition has been demonstrated by antiapoptotic effects, antiproliferative effects, or by upregulating factors responsible for cell cycle arrest or cell death in various in vivo CRC models. Numerous studies from independent laboratories have highlighted different plant phenolic compounds for their anti-CRC activities. While promising anti-CRC activity in many of these agents has created interest in this area, in-depth mechanistic and well-designed clinical studies are needed to support the therapeutic use of these compounds for the prevention and treatment of CRC.

12.
Adv Exp Med Biol ; 1391: 161-179, 2022.
Article in English | MEDLINE | ID: mdl-36472822

ABSTRACT

Prostate cancer is the most commonly diagnosed and frequently occurred cancer in the males globally. The current treatment strategies available to treat prostate cancer are not much effective and express various adverse effects. Hence, there is an urgent need to identify novel treatment that can improve patient outcome. From times immemorial, natural products are highly recognized for novel drug development for various diseases including cancer. Cancer cells generally maintain higher basal levels of reactive oxygen species (ROS) when compared to normal cells due to its high metabolic rate. However, initiation of excess intracellular ROS production can not be tolerated by the cancer cells and induce several cell death signals which are in contrast to normal cells. Therefore, small molecules of natural origin that induce ROS can potentially kill cancer cells in specific and provide a better opportunity to develop a novel drug therapy. In this review, we elaborated various classes of medicinal compounds and their mechanism of killing prostate cancer cells through direct or indirect ROS generation. This can generate a novel thought to develop promising drug candidate to treat prostate cancer patients.


Subject(s)
Biological Products , Prostatic Neoplasms , Humans , Male , Biological Products/pharmacology , Biological Products/therapeutic use , Prostatic Neoplasms/drug therapy , Oxidative Stress
13.
Adv Exp Med Biol ; 1391: 181-199, 2022.
Article in English | MEDLINE | ID: mdl-36472823

ABSTRACT

Proper regulation of cellular protein quality control is crucial for cellular health. It appears that the protein quality control machinery is subjected to distinct regulation in different cellular contexts such as in somatic cells and in germ cells. Heat shock factors (HSFs) play critical role in the control of quality of cellular proteins through controlling expression of many genes encoding different proteins including those for inducible protein chaperones. Mammalian cells exert distinct mechanism of cellular functions through maintenance of tissue-specific HSFs. Here, we have discussed different HSFs and their functions including those during spermatogenesis. We have also discussed the different heat shock proteins induced by the HSFs and their activities in those contexts. We have also identified several small molecule activators and inhibitors of HSFs from different sources reported so far.


Subject(s)
Heat-Shock Response
14.
J Ethnopharmacol ; 283: 114666, 2022 Jan 30.
Article in English | MEDLINE | ID: mdl-34592338

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Ervatamia coronaria, a popular garden plant in India and some other parts of the world is known traditionally for its anti-inflammatory and anti-cancer properties. The molecular bases of these functions remain poorly understood. AIM OF THE STUDY: Efficacies of the existing therapies for colorectal cancer (CRC) are limited by their life-threatening side effects and unaffordability. Therefore, identifying a safer, efficient, and affordable therapeutic is urgent. We studied the anti-CRC activity of an alkaloid-rich fraction of E. coronaria leaf extracts (AFE) and associated underlying mechanism. MATERIALS AND METHODS: Activity guided solvant fractionation was adopted to identify the activity in AFE. Different cell lines, and tumor grown in syngeneic mice were used to understand the anti-CRC effect. Methodologies such as LCMS, MTT, RT-qPCR, immunoblot, immunohistochemistry were employed to understand the molecular basis of its activity. RESULTS: We showed that AFE, which carries about six major compounds, is highly toxic to colorectal cancer (CRC) cells. AFE induced cell cycle arrest at G1 phase and p21 and p27 genes, while those of CDK2, CDK-4, cyclin-D, and cyclin-E genes were downregulated in HCT116 cells. It predominantly induced apoptosis in HCT116p53+/+ cells while the HCT116p53-/- cells under the same treatment condition died by autophagy. Notably, AFE induced upregulation of AMPK phosphorylation, and inhibition of both of the mTOR complexes as indicated by inhibition of phosphorylation of S6K1, 4EBP1, and AKT. Furthermore, AFE inhibited mTOR-driven conversion of cells from reversible cell cycle arrest to senescence (geroconversion) as well as ERK activity. AFE activity was independent of ROS produced, and did not primarily target the cellular DNA or cytoskeleton. AFE also efficiently regressed CT26-derived solid tumor in Balb/c mice acting alone or in synergy with 5FU through inducing autophagy as a major mechanism of action as indicated by upregulation of Beclin 1 and phospho-AMPK, and inhibition of phospho-S6K1 levels in the tumor tissue lysates. CONCLUSION: AFE induced CRC death through activation of both apoptotic and autophagy pathways without affecting the normal cells. This study provided a logical basis for consideration of AFE in future therapy regimen to overcome the limitations associated with existing anti-CRC chemotherapy.


Subject(s)
Alkaloids/pharmacology , Antineoplastic Agents, Phytogenic/pharmacology , Colorectal Neoplasms/drug therapy , Tabernaemontana/chemistry , AMP-Activated Protein Kinases/metabolism , Alkaloids/isolation & purification , Animals , Antineoplastic Agents, Phytogenic/isolation & purification , Apoptosis/drug effects , Autophagy/drug effects , Cell Cycle Checkpoints/drug effects , HCT116 Cells , HT29 Cells , Humans , Male , Mice , Mice, Inbred BALB C , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/metabolism , Xenograft Model Antitumor Assays
15.
Article in English | MEDLINE | ID: mdl-34909665

ABSTRACT

Prostate cancer (PCa) is a major cause of morbidity and mortality in men worldwide. A geographic variation on the burden of the disease suggested that the environment, genetic makeup, lifestyle, and food habits modulate one's susceptibility to the disease. Although it has been generally thought to be an older age disease, and awareness and timely execution of screening programs have managed to contain the disease in the older population over the last decades, the incidence is still increasing in the population younger than 50. Existing treatment is efficient for PCa that is localized and responsive to androgen. However, the androgen resistant and metastatic PCa are challenging to treat. Conventional radiation and chemotherapies are associated with severe side effects in addition to being exorbitantly expensive. Many isolated phytochemicals and extracts of plants used in traditional medicine are known for their safety and diverse healing properties, including many with varying levels of anti-PCa activities. Many of the phytochemicals discussed here, as shown by many laboratories, inhibit tumor cell growth and proliferation by interfering with the components in the pathways responsible for the enhanced proliferation, metabolism, angiogenesis, invasion, and metastasis in the prostate cells while upregulating the mechanisms of cell death and cell cycle arrest. Notably, many of these agents simultaneously target multiple cellular pathways. We analyzed the available literature and provided an update on this issue in this review article.

16.
BMC Pharmacol Toxicol ; 22(1): 43, 2021 07 15.
Article in English | MEDLINE | ID: mdl-34266475

ABSTRACT

BACKGROUND: Esculetin is a natural coumarin derivative from various plants with multiple pharmacological effects. Hence, the present study was undertaken to explore the cardio protective potential of esculetin against isoproterenol induced myocardial toxicity in rats. METHODS: The treatment schedule was fixed for 28 days and the rats were divided into five groups of six each. Rats of group I received the normal saline and served as normal control, group II was received ISO (100 mg/kg body weight) for last two consecutive days of the study and served as disease control. Groups III and IV received esculetin 10 and 20 mg/kg body weight respectively once a day per oral for 28 days along with ISO for last two consecutive days of the study. Cardiac biomarkers such as CK-MB and LDH, membrane bound Na+ /K+ ATPases activity, myocardial lysosomal enzymes activity and tissue antioxidants status were estimated in the heart tissue samples. The histopathological changes in the myocardium were also assessed. Further, DPPH assay was done to evaluate the free radicals scavenging potential of esculetin. Cytoxicity assay, intracellular ROS levels by DCFDA assay and m-RNA expression of TNF-α, IL-6 and NF-κB by quantitative RT-PCR in H9c2 cell lines. RESULTS: The increased levels of CK-MB, LDH, LPO, myocardial lysosomal enzymes and membrane bound Na+ /K+ ATPase levels by ISO administration was significantly increased with concomitant decrease in tissue antioxidant enzymes such as GSH, Catalase, and SOD. Pre-treatment with esculetin for 28 days has significantly decreased the levels of cardiac bio-markers, lysosomal enzymes, membrane bound Na+ /K+ ATPase levels as well as Lipid peroxides which is in contrary to the ISO group. Amelioration of the antioxidant levels were also found in esculetin treated groups. Histopathological examination of heart reveals that myocardial degeneration, mononuclear cell infiltration was noticed in ISO treated rats, whereas the same was restored with esculetin treatment. In H9C2 cell lines esculetin could effectively reduced intracellular ROS inhibition and m-RNA expression of pro-inflammatory cytokines including TNF-α, IL-6 and NF-κB to prevent apoptosis or cell necrosis. CONCLUSION: The study provides the evidence of cardioprotective potentials of esculetin against isoproterenol induced myocardial infarction by antioxidant and myocardial membrane stabilization along with in vitro protection from arsenic induced ROS cell necrosis or apoptosis in H9C2 cells.


Subject(s)
Adrenergic beta-Agonists/toxicity , Cardiotonic Agents/therapeutic use , Isoproterenol/toxicity , Myocardial Infarction/drug therapy , Umbelliferones/therapeutic use , Animals , Arsenic/toxicity , Biphenyl Compounds/chemistry , Cardiotonic Agents/chemistry , Cardiotonic Agents/pharmacology , Cell Line , Cell Survival/drug effects , Cytokines/genetics , Lysosomes/drug effects , Male , Myocardial Infarction/chemically induced , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Myocardium/metabolism , Myocardium/pathology , Picrates/chemistry , Rats, Wistar , Reactive Oxygen Species/metabolism , Sodium-Potassium-Exchanging ATPase/metabolism , Umbelliferones/chemistry , Umbelliferones/pharmacology
17.
Biochim Biophys Acta Gen Subj ; 1865(6): 129885, 2021 06.
Article in English | MEDLINE | ID: mdl-33639218

ABSTRACT

BACKGROUND: Heat shock response (HSR), a component of cellular protein quality control mechanisms, is defective in different neurodegenerative conditions such as Parkinson's disease (PD). Forced upregulation of heat shock factor 1 (HSF1), an HSR master regulator, showed therapeutic promise in PD models. Many of the reported small-molecule HSF1 activators have limited functions. Therefore, identification and understanding the molecular bases of action of new HSF1 activating molecules is necessary. METHOD: We used a cell-based reporter system to screen Andrographis paniculata leaf extract to isolate andrographolide as an inducer of HSF1 activity. The andrographolide activity was characterized by analyzing its role in different protein quality control mechanisms. RESULT: We find that besides ameliorating the PD in MPTP-treated mice, andrographolide upregulated different machineries controlled by HSF1 and NRF2 in both cell and mouse brain. Andrographolide achieves these functions through mTORC1 activated via p38 MAPK and ERK pathways. NRF2 activation is reflected in the upregulation of proteasome as well as autophagy pathways. We further show that NRF2 activation is mediated through mTORC1 driven phosphorylation of p62/sequestosome 1. Studies with different cell types suggested that andrographolide-mediated induction of ROS level underlies all these activities in agreement with the upregulation of mTORC1 and NRF2-antioxidant pathway in mice. CONCLUSION: Andrographolide through upregulating HSF1 activity ameliorates protein aggregation induced cellular toxicity. GENERAL SIGNIFICANCE: Our results provide a reasonable basis for use of andrographolide in the therapy regimen for the treatment of PD.


Subject(s)
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/adverse effects , Anti-Inflammatory Agents/pharmacology , Diterpenes/pharmacology , Gene Expression Regulation/drug effects , Mechanistic Target of Rapamycin Complex 1/metabolism , Parkinson Disease/prevention & control , Animals , Heat Shock Transcription Factors/genetics , Heat Shock Transcription Factors/metabolism , Heme Oxygenase-1/genetics , Heme Oxygenase-1/metabolism , Male , Mechanistic Target of Rapamycin Complex 1/genetics , Mice , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Neurotoxins/toxicity , Parkinson Disease/etiology , Parkinson Disease/metabolism , Parkinson Disease/pathology , p38 Mitogen-Activated Protein Kinases/genetics , p38 Mitogen-Activated Protein Kinases/metabolism
18.
BMC Complement Med Ther ; 20(1): 355, 2020 Nov 23.
Article in English | MEDLINE | ID: mdl-33225921

ABSTRACT

BACKGROUNDS: Colon cancer is the third most deadly and one of the most diagnosed diseases in the world. Although routine screening and early detection during last decades has improved the survival, colon cancer still claims hundreds of thousands lives each year worldwide. Surgery and chemotherapy is mainstay of current treatment, nevertheless toxicity associated with this treatment underscores the urgency of demand of a better therapeutics. Close to 50% of current chemotherapeutic drugs are direct or indirect descendants compounds isolated from medicinal plants, which indicate plants are great potential sources of novel therapeutics. In our literature review we found Eclipta alba to posses many pharmacological activities, including those with anticancer potentials. However, no study on anticancer activity of this kind has been reported. METHODS: Phytochemicals were extracted by maceration method from shade dried whole plant of Eclipta alba using methanol as a solvent. The anticancer effect of extract was investigated on various cancer cell lines like human colorectal carcinoma (HCT-116), human prostate cancer (PC-3), Michigan cancer foundation-breast cancer (MCF-7) and renal cell carcinoma (RCC-45). We have also studied the effects on normal human embryonic lung fibroblast cell (WI-38) using MTT (methyl thiazoldiphenyltetrazolium bromide) assay, clonogenic (colony formation) and migration assay. Finally obtained results were analyzed using ANNOVA and Dunnett's test. RESULTS: Results obtained from MTT assay revealed that the methanolic extract of Eclipta alba carried significant (p < 0.005) specificity against HCT-116 cells as compared to the other cancer cells. This extract also showed minimal or nontoxicity to WI-38 cells. Migration as well as clonogenic assays also confirmed the anticancer potential of the extract against HCT-116 cells. CONCLUSION: This is a unique finding of its kind because the specific anticancer effect with minimal toxicity on normal cells has not been reported on Eclipta alba extract. Finally this finding opens up a great possibility to develop a novel antitumor drug candidate against deadly colon cancer in the future.


Subject(s)
Antineoplastic Agents/pharmacology , Colonic Neoplasms/drug therapy , Eclipta , Plant Extracts/pharmacology , Cell Line, Tumor , Cell Movement/drug effects , Cell Survival/drug effects , HCT116 Cells , Humans , India
19.
Mol Neurobiol ; 55(8): 6337-6346, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29294248

ABSTRACT

Huntington's disease (HD) is an autosomal dominantly inherited neurodegenerative disorder caused by expansion of CAG repeats in the coding area of huntingtin gene. In the HD brain, mutant huntingtin protein goes through proteolysis, and its amino-terminal portion consisting of polyglutamine repeats accumulate as inclusions that result in progressive impairment of cellular protein quality control system. Here, we demonstrate that partial rescue of the defective protein quality control in HD model mouse by azadiradione (a bioactive limonoids found in the seed of Azadirachta indica) could potentially improve the disease pathology. Prolonged treatment of azadiradione to HD mice significantly improved the progressive deterioration in body weight, motor functioning along with extension of lifespan. Azadiradione-treated HD mice brain also exhibited considerable decrease in mutant huntingtin aggregates load and improvement of striatal pathology in comparison with age-matched saline-treated HD controls. Biochemical analysis further revealed upregulation and activation of not only HSF1 (master regulator of protein folding) but also Ube3a (an ubiquitin ligase involved in the clearance of mutant huntingtin) in azadiradione-treated mice. Our results indicate that azadiradione-mediated enhanced folding and clearance of mutant huntingtin might underlie improved disease pathology in HD mice and suggests that it could be a potential therapeutic molecule to delay the progression of HD.


Subject(s)
Disease Progression , Huntingtin Protein/metabolism , Huntington Disease/drug therapy , Huntington Disease/pathology , Limonins/therapeutic use , Animals , Atrophy , Disease Models, Animal , Dopamine and cAMP-Regulated Phosphoprotein 32/metabolism , Heat Shock Transcription Factors/metabolism , Huntington Disease/physiopathology , Limonins/administration & dosage , Limonins/pharmacology , Longevity , Mice, Transgenic , Models, Biological , Motor Activity/drug effects , Mutant Proteins/metabolism , Neostriatum/drug effects , Neostriatum/metabolism , Neostriatum/pathology , Neostriatum/physiopathology , Protein Aggregates/drug effects , Quality Control , Ubiquitin-Protein Ligases/metabolism , Up-Regulation
20.
Oncotarget ; 7(48): 78281-78296, 2016 Nov 29.
Article in English | MEDLINE | ID: mdl-27835876

ABSTRACT

Aggregation of proteins with the expansion of polyglutamine tracts in the brain underlies progressive genetic neurodegenerative diseases (NDs) like Huntington's disease and spinocerebellar ataxias (SCA). An insensitive cellular proteotoxic stress response to non-native protein oligomers is common in such conditions. Indeed, upregulation of heat shock factor 1 (HSF1) function and its target protein chaperone expression has shown promising results in animal models of NDs. Using an HSF1 sensitive cell based reporter screening, we have isolated azadiradione (AZD) from the methanolic extract of seeds of Azadirachta indica, a plant known for its multifarious medicinal properties. We show that AZD ameliorates toxicity due to protein aggregation in cell and fly models of polyglutamine expansion diseases to a great extent. All these effects are correlated with activation of HSF1 function and expression of its target protein chaperone genes. Notably, HSF1 activation by AZD is independent of cellular HSP90 or proteasome function. Furthermore, we show that AZD directly interacts with purified human HSF1 with high specificity, and facilitates binding of HSF1 to its recognition sequence with higher affinity. These unique findings qualify AZD as an ideal lead molecule for consideration for drug development against NDs that affect millions worldwide.


Subject(s)
DNA/metabolism , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Heat Shock Transcription Factors/metabolism , Limonins/pharmacology , Neurodegenerative Diseases/prevention & control , Neuroprotective Agents/pharmacology , Peptides/metabolism , Plant Extracts/pharmacology , Protein Aggregation, Pathological , Animals , Azadirachta/chemistry , DNA/genetics , Disease Models, Animal , Dose-Response Relationship, Drug , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , HCT116 Cells , HEK293 Cells , Heat Shock Transcription Factors/genetics , Humans , Limonins/isolation & purification , Limonins/metabolism , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , Neuroprotective Agents/isolation & purification , Neuroprotective Agents/metabolism , Plant Extracts/isolation & purification , Plant Extracts/metabolism , Protein Binding , Seeds , Time Factors , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...