Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 4(6): 3227-35, 2010 Jun 22.
Article in English | MEDLINE | ID: mdl-20527795

ABSTRACT

For decades, ethanol has been in use as a fuel for the storage of solar energy in an energy-dense, liquid form. Over the past decade, the ability to reform ethanol into hydrogen gas suitable for a fuel cell has drawn interest as a way to increase the efficiency of both vehicles and stand-alone power generators. Here we report the use of extremely small nanocrystalline materials to enhance the performance of 1% Rh/10% Ni@CeO(2) catalysts in the oxidative steam reforming of ethanol with a ratio of 1.7:1:10:11 (air/EtOH/water/argon) into hydrogen gas, achieving 100% conversion of ethanol at only 300 degrees C with 60% H(2) in the product stream and less than 0.5% CO. Additionally, nanocrystalline 10% Ni@CeO(2) was shown to achieve 100% conversion of ethanol at 400 degrees C with 73% H(2), 2% CO, and 2% CH(4) in the product stream. Finally, we demonstrate the use of biological templating on M13 to improve the resistance of this catalyst to deactivation over 52 h tests at high flow rates (120 000 h(-1) GHSV) at 450 degrees C. This study suggests that the use of highly nanocrystalline, biotemplated catalysts to improve activity and stability is a promising route to significant gains over traditional catalyst manufacture methods.


Subject(s)
Bacteriophage M13/chemistry , Bioelectric Energy Sources , Crystallization/methods , Ethanol/chemistry , Hydrogen/chemistry , Nanostructures/chemistry , Nanostructures/ultrastructure , Viral Proteins/chemistry , Catalysis , Hydrogen/isolation & purification , Macromolecular Substances/chemistry , Materials Testing , Molecular Conformation , Nanotechnology/methods , Particle Size , Surface Properties
2.
Science ; 315(5810): 358-61, 2007 Jan 19.
Article in English | MEDLINE | ID: mdl-17234943

ABSTRACT

Nanoparticles can be used as the building blocks for materials such as supracrystals or ionic liquids. However, they lack the ability to bond along specific directions as atoms and molecules do. We report a simple method to place target molecules specifically at two diametrically opposed positions in the molecular coating of metal nanoparticles. The approach is based on the functionalization of the polar singularities that must form when a curved surface is coated with ordered monolayers, such as a phase-separated mixture of ligands. The molecules placed at these polar defects have been used as chemical handles to form nanoparticle chains that in turn can generate self-standing films.

SELECTION OF CITATIONS
SEARCH DETAIL
...