Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Nucl Med ; 64(10): 1519-1525, 2023 10.
Article in English | MEDLINE | ID: mdl-37536737

ABSTRACT

The 18-kDa translocator protein (TSPO) is gaining recognition as a relevant target in glioblastoma imaging. However, data on the potential prognostic value of TSPO PET imaging in glioblastoma are lacking. Therefore, we investigated the association of TSPO PET imaging results with survival outcome in a homogeneous cohort of glioblastoma patients. Methods: Patients were included who had newly diagnosed, histologically confirmed isocitrate dehydrogenase (IDH)-wild-type glioblastoma with available TSPO PET before either normofractionated radiotherapy combined with temozolomide or hypofractionated radiotherapy. SUVmax on TSPO PET, TSPO binding affinity status, tumor volumes on MRI, and further clinical data, such as O 6-alkylguanine DNA methyltransferase (MGMT) and telomerase reverse transcriptase (TERT) gene promoter mutation status, were correlated with patient survival. Results: Forty-five patients (median age, 63.3 y) were included. Median SUVmax was 2.2 (range, 1.0-4.7). A TSPO PET signal was associated with survival: High uptake intensity (SUVmax > 2.2) was related to significantly shorter overall survival (OS; 8.3 vs. 17.8 mo, P = 0.037). Besides SUVmax, prognostic factors for OS were age (P = 0.046), MGMT promoter methylation status (P = 0.032), and T2-weighted MRI volume (P = 0.031). In the multivariate survival analysis, SUVmax in TSPO PET remained an independent prognostic factor for OS (P = 0.023), with a hazard ratio of 2.212 (95% CI, 1.115-4.386) for death in cases with a high TSPO PET signal (SUVmax > 2.2). Conclusion: A high TSPO PET signal before radiotherapy is associated with significantly shorter survival in patients with newly diagnosed IDH-wild-type glioblastoma. TSPO PET seems to add prognostic insights beyond established clinical parameters and might serve as an informative tool as clinicians make survival predictions for patients with glioblastoma.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Middle Aged , Glioblastoma/diagnostic imaging , Glioblastoma/genetics , Glioblastoma/radiotherapy , Prognosis , Isocitrate Dehydrogenase/genetics , Temozolomide/therapeutic use , Positron-Emission Tomography , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/genetics , Brain Neoplasms/radiotherapy , Receptors, GABA/genetics
2.
Eur J Nucl Med Mol Imaging ; 50(3): 859-869, 2023 02.
Article in English | MEDLINE | ID: mdl-36329288

ABSTRACT

PURPOSE: Glioma patients, especially recurrent glioma, suffer from a poor prognosis. While advances to classify glioma on a molecular level improved prognostication at initial diagnosis, markers to prognosticate survival in the recurrent situation are still needed. As 18 kDa translocator protein (TSPO) was previously reported to be associated with aggressive histopathological glioma features, we correlated the TSPO positron emission tomography (PET) signal using [18F]GE180 in a large cohort of recurrent glioma patients with their clinical outcome. METHODS: In patients with [18F]GE180 PET at glioma recurrence, [18F]GE180 PET parameters (e.g., SUVmax) as well as other imaging features (e.g., MRI volume, [18F]FET PET parameters when available) were evaluated together with patient characteristics (age, sex, Karnofsky-Performance score) and neuropathological features (e.g. WHO 2021 grade, IDH-mutation status). Uni- and multivariate Cox regression and Kaplan-Meier survival analyses were performed to identify prognostic factors for post-recurrence survival (PRS) and time to treatment failure (TTF). RESULTS: Eighty-eight consecutive patients were evaluated. TSPO tracer uptake correlated with tumor grade at recurrence (p < 0.05), with no significant differences in IDH-wild-type versus IDH-mutant tumors. Within the subgroup of IDH-mutant glioma (n = 46), patients with low SUVmax (median split, ≤ 1.60) had a significantly longer PRS (median 41.6 vs. 25.3 months, p = 0.031) and TTF (32.2 vs 8.7 months, p = 0.001). Also among IDH-wild-type glioblastoma (n = 42), patients with low SUVmax (≤ 1.89) had a significantly longer PRS (median not reached vs 8.2 months, p = 0.002). SUVmax remained an independent prognostic factor for PRS in the multivariate analysis including CNS WHO 2021 grade, IDH status, and age. Tumor volume defined by [18F]FET PET or contrast-enhanced MRI correlated weakly with TSPO tracer uptake. Treatment regimen did not differ among the median split subgroups. CONCLUSION: Our data suggest that TSPO PET using [18F]GE180 can help to prognosticate recurrent glioma patients even among homogeneous molecular subgroups and may therefore serve as valuable non-invasive biomarker for individualized patient management.


Subject(s)
Brain Neoplasms , Glioblastoma , Glioma , Humans , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/genetics , Brain Neoplasms/therapy , Neoplasm Recurrence, Local/diagnostic imaging , Glioma/diagnostic imaging , Glioma/genetics , Glioma/therapy , Positron-Emission Tomography/methods , Tyrosine , Receptors, GABA/genetics , Receptors, GABA/metabolism
3.
Eur J Nucl Med Mol Imaging ; 46(12): 2581-2589, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31410540

ABSTRACT

PURPOSE: According to the updated WHO classification of gliomas with its emphasis on molecular parameters, tumours with an IDH-wildtype status have a dismal prognosis. To ensure timely adjustment of treatment, demand for non-invasive prediction methods is high. 18F-FET PET has been shown to be an important diagnostic tool for glioma management. The aim of this study was to assess the value of dynamic 18F-FET PET for the non-invasive prediction of the IDH-mutation status. METHODS: Newly diagnosed WHO grade II-IV glioma patients with MRI and dynamic 18F-FET PET were included. The 18F-FET PET parameters mean and maximal tumour-to-background ratio (TBRmean, TBRmax) and minimal time-to-peak (TTPmin) were evaluated. The diagnostic power for the prediction of the IDH genotype (positive/negative predictive value) was tested in the overall study group and in the subgroup of non-contrast enhancing gliomas. RESULTS: Three hundred forty-one patients were evaluated. Molecular analyses revealed 178 IDH-mutant and 163 IDH-wildtype tumours. Overall, 270/341 gliomas were classified as 18F-FET-positive (TBRmax > 1.6), 90.2% of the IDH-wildtype and 69.1% of IDH-mutant gliomas. Median TBRmax was significantly higher in IDH-wildtype compared with IDH-mutant gliomas (2.9 vs. 2.3, p < 0.001); however, ROC-analyses revealed no reliable cutoff due to a high overlap (range 1.0-7.1 vs. 1.1-7.9). Dynamic analysis revealed a significantly shorter TTPmin in IDH-wildtype gliomas; using TTPmin ≤ 12.5 min as indicator for IDH-wildtype gliomas, a positive predictive value of 87% was reached (negative predictive value 72%, AUC = 0.796, p ≤ 0.001). A total of 161/341 gliomas did not show contrast enhancement on MRI; even within this subgroup, TTPmin ≤ 12.5 min remained a good predictor of IDH-wildtype glioma (positive predictive value 83%, negative predictive value 90%; AUC = 0.868, p < 0.001). CONCLUSION: A short TTPmin in dynamic 18F-FET PET serves as good predictor of highly aggressive IDH-wildtype status in gliomas. In particular, a high diagnostic power was observed in the subgroup of non-contrast enhancing gliomas, which helps to identify patients with worse prognosis.


Subject(s)
Genotype , Glioma/diagnostic imaging , Glioma/metabolism , Isocitrate Dehydrogenase/genetics , Mutation , Positron-Emission Tomography , Tyrosine/analogs & derivatives , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Female , Glioma/genetics , Glioma/pathology , Humans , Male , Middle Aged , Neoplasm Grading , Neoplasm Invasiveness
SELECTION OF CITATIONS
SEARCH DETAIL
...