Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 28(4)2023 Feb 13.
Article in English | MEDLINE | ID: mdl-36838745

ABSTRACT

A comprehensive study focused on the preparation of disubstituted carboxonium derivatives of closo-decaborate anion [2,6-B10H8O2CC6H5]- was carried out. The proposed synthesis of the target product was based on the interaction between the anion [B10H11]- and benzoic acid C6H5COOH. It was shown that the formation of this product proceeds stepwise through the formation of a mono-substituted product [B10H9OC(OH)C6H5]-. In addition, an alternative one-step approach for obtaining the target derivative is postulated. The structure of tetrabutylammonium salts of carboxonium derivative ((C4H9)4N)[2,6-B10H8O2CC6H5] was established with the help of X-ray structure analysis. The reaction pathway for the formation of [2,6-B10H8O2CC6H5]- was investigated with the help of density functional theory (DFT) calculations. This process has an electrophile induced nucleophilic substitution (EINS) mechanism, and intermediate anionic species play a key role. Such intermediates have a structure in which one boron atom coordinates two hydrogen atoms. The regioselectivity for the process of formation for the 2,6-isomer was also proved by theoretical calculations. Generally, in the experimental part, the simple and available approach for producing disubstituted carboxonium derivative was introduced, and the mechanism of this process was investigated with the help of theoretical calculations. The proposed approach can be applicable for the preparation of a wide range of disubstituted derivatives of closo-borate anions.


Subject(s)
Borates , Boron , Borates/chemistry , Anions/chemistry , Boron/chemistry , Isomerism
2.
Int J Mol Sci ; 22(24)2021 Dec 13.
Article in English | MEDLINE | ID: mdl-34948186

ABSTRACT

In the present work, a convenient and straightforward approach to the preparation of borylated amidines based on the closo-dodecaborate anion [B12H11NCCH3NHR]-, R=H, Alk, Ar was developed. This method has two stages. A nitrile derivative of the general form [B12H11NCCH3]- was obtained, using a modified technique, in the first stage. On the second stage the resulting molecular system interacted with primary amines to form the target amidine products. This approach is characterised by a simple chemical apparatus, mild conditions and high yields of the final products. The mechanism of the addition of amine to the nitrile derivative of the closo-dodecaborate anion was studied, using quantum-chemical methods. The interaction between NH3 and [B12H11NCCH3]- ammonia was chosen as an example. It was found that the structure of the transition state determines the stereo-selectivity of the process. A study of the biological properties of borylated amidine sodium salts indicated that the substances had low toxicity and could accumulate in cancer cells in significant amounts.


Subject(s)
Amidines/chemical synthesis , Boron Neutron Capture Therapy/methods , Amidines/chemistry , Amines , Anions , Boron Compounds/chemistry , Drug Design
SELECTION OF CITATIONS
SEARCH DETAIL
...