Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Cell Environ ; 38(9): 1866-80, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25210866

ABSTRACT

Maize (Zea mays ssp. mays L.) is highly susceptible to drought stress. This work focused on whole-plant physiological mechanisms by which a biotechnology-derived maize event expressing bacterial cold shock protein B (CspB), MON 87460, increased grain yield under drought. Plants of MON 87460 and a conventional control (hereafter 'control') were tested in the field under well-watered (WW) and water-limited (WL) treatments imposed during mid-vegetative to mid-reproductive stages during 2009-2011. Across years, average grain yield increased by 6% in MON 87460 compared with control under WL conditions. This was associated with higher soil water content at 0.5 m depth during the treatment phase, increased ear growth, decreased leaf area, leaf dry weight and sap flow rate during silking, increased kernel number and harvest index in MON 87460 than the control. No consistent differences were observed under WW conditions. This indicates that MON 87460 acclimated better under WL conditions than the control by lowering leaf growth which decreased water use during silking, thereby eliciting lower stress under WL conditions. These physiological responses in MON 87460 under WL conditions resulted in increased ear growth during silking, which subsequently increased the kernel number, harvest index and grain yield compared to the control.


Subject(s)
Biotechnology/methods , Droughts , Zea mays/physiology , Bacterial Proteins/genetics , Edible Grain , Plant Leaves/physiology , Plants, Genetically Modified/physiology , Soil/chemistry
2.
Photosynth Res ; 119(1-2): 119-29, 2014 Feb.
Article in English | MEDLINE | ID: mdl-23893317

ABSTRACT

Ecologists and physiologists have documented extensive variation in water use efficiency (WUE) in Arabidopsis thaliana, as well as association of WUE with climatic variation. Here, we demonstrate correlations of whole-plant transpiration efficiency and carbon isotope composition (δ(13)C) among life history classes of A. thaliana. We also use a whole-plant cuvette to examine patterns of co-variation in component traits of WUE and δ(13)C. We find that stomatal conductance (g s) explains more variation in WUE than does A. Overall, there was a strong genetic correlation between A and g s, consistent with selection acting on the ratio of these traits. At a more detailed level, genetic variation in A was due to underlying variation in both maximal rate of carboxylation (V cmax) and maximum electron transport rate (Jmax). We also found strong effects of leaf anatomy, where lines with lower WUE had higher leaf water content (LWC) and specific leaf area (SLA), suggesting a role for mesophyll conductance (g m) in variation of WUE. We hypothesize that this is due to an effect through g m, and test this hypothesis using the abi4 mutant. We show that mutants of ABI4 have higher SLA, LWC, and g m than wild-type, consistent with variation in leaf anatomy causing variation in g m and δ(13)C. These functional data also add further support to the central, integrative role of ABI4 in simultaneously altering ABA sensitivity, sugar signaling, and CO2 assimilation. Together our results highlight the need for a more holistic approach in functional studies, both for more accurate annotation of gene function and to understand co-limitations to plant growth and productivity.


Subject(s)
Arabidopsis/physiology , Carbon Isotopes/metabolism , Genetic Variation , Water/metabolism , Abscisic Acid/pharmacology , Arabidopsis/drug effects , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Carbon Dioxide/metabolism , Electron Transport/genetics , Mesophyll Cells/physiology , Mutation , Plant Leaves/anatomy & histology , Plant Leaves/metabolism , Plant Stomata/physiology , Plant Transpiration/genetics , Plant Transpiration/physiology , Transcription Factors/genetics
3.
Evolution ; 62(12): 3014-26, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18691264

ABSTRACT

Despite compelling evidence that adaptation to local climate is common in plant populations, little is known about the evolutionary genetics of traits that contribute to climatic adaptation. A screen of natural accessions of Arabidopsis thaliana revealed Tsu-1 and Kas-1 to be opposite extremes for water-use efficiency and climate at collection sites for these accessions differs greatly. To provide a tool to understand the genetic basis of this putative adaptation, Kas-1 and Tsu-1 were reciprocally crossed to create a new mapping population. Analysis of F(3) families showed segregating variation in both delta(13)C and transpiration rate, and as expected these traits had a negative genetic correlation (r(g)=- 0.3). 346 RILs, 148 with Kas-1 cytoplasm and 198 with Tsu-1 cytoplasm, were advanced to the F(9) and genotyped using 48 microsatellites and 55 SNPs for a total of 103 markers. This mapping population was used for QTL analysis of delta(13)C using F(9) RIL means. Analysis of this reciprocal cross showed a large effect of cytoplasmic background, as well as two QTL for delta(13)C. The Kas-1 x Tsu-1 mapping population provides a powerful new resource for mapping QTL underlying natural variation and for dissecting the genetic basis of water-use efficiency differences.


Subject(s)
Adaptation, Biological/genetics , Arabidopsis/genetics , Droughts , Quantitative Trait Loci , Adaptation, Biological/physiology , Analysis of Variance , Crosses, Genetic , Genetic Markers/genetics , Genotype , Microsatellite Repeats/genetics , Polymorphism, Single Nucleotide/genetics , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...