Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomol Struct Dyn ; 40(7): 2865-2877, 2022 04.
Article in English | MEDLINE | ID: mdl-33183168

ABSTRACT

Recent years have witnessed advancement in cancer research that has led to the development of improved cytotoxic therapies with reduced side effects. Methotrexate (MTX) is a commonly used anticancer drug having robust activity, but with serious side effects. Several derivatives of MTX have been reported by modification at different sites to reduce its side effects and enhance efficacy. The current work describes the development of active MTX Schiff base derivatives by treating MTX with several aldehydes viz 2-chlorobenzaldehyde, 3-nitrobenzaldehyde, 5-chloro-2-hydroxybenz-aldehyde, 2-hydroxy-5-nitrobenzaldehyde, 2-thiocarboxyaldehyde, trans-2-pentenal and glutaraldehyde. Newly synthesized derivatives were evaluated for their anticancer potential against human malignant glioma U87 (MG-U87) cell lines at different concentrations of 200 µM, 100 µM, 50 µM, 25 µM, 12.5 µm, 6.25 µm and 0 µM. MTX derivatives with 2-Chlorobenzaldehyde (IC50 ∼100 µM), 2-Thiocarboxyaldehyde (IC50 <200 µM) and 2- Pentenal (IC50 ∼250 µM) showed much better activity at 100 µM compared to 400 µM concentration of MTX. Molecular docking studies were performed that showed a good correlation with the results obtained from in vitro experiments. The excellent agreement between molecular modeling and growth inhibition assay shows that the binding mode hypothesis is justly close to the experimentally biological values, therefore, may prove helpful for further lead optimization and clinical trials.Communicated by Ramaswamy H. Sarma.


Subject(s)
Antineoplastic Agents , Glioma , Antineoplastic Agents/chemistry , Cell Line , Cell Proliferation , Drug Screening Assays, Antitumor , Glioma/drug therapy , Humans , Methotrexate/pharmacology , Methotrexate/therapeutic use , Molecular Docking Simulation , Molecular Structure , Schiff Bases/pharmacology , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...