Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Turk J Biol ; 46(4): 263-276, 2022.
Article in English | MEDLINE | ID: mdl-37529092

ABSTRACT

Human SARS coronavirus 2 (SARS-CoV-2) causes the current global COVID-19 pandemic. The production of an efficient vaccine against COVID-19 is under heavy investigation. In this study, we have designed a novel multiepitope DNA vaccine against SARS-CoV-2 using reverse vaccinology and DNA vaccine approaches. Applying these strategies led to reduce the time and costs of vaccine development and also improve the immune protective characteristics of the vaccine. For this purpose, epitopes of nucleocapsid, membrane glycoprotein, and ORF8 proteins of SARS-CoV-2 chose as targets for B and T-cell receptors. Accordingly, DNA sequences of selected epitopes have optimized for protein expression in the eukaryotic system. To this end, the Kozak and tissue plasminogen activator sequences were added into the epitope sequences for proper protein expression and secretion, respectively. Furthermore, interleukin-2 and beta-defensin 1 preproprotein sequences were incorporated to the designed DNA vaccine as an adjuvant. Modeling and refinement of fused protein composed of SARS-CoV-2 multiepitope antigens (fuspMA) have performed based on homology modeling of orthologous peptides, then constructed 3D model of fuspMA was more investigated during 50 ns of molecular dynamics simulation. Further bioinformatics predictions demonstrated that fuspMA is a stable protein with acceptable antigenic features and no allergenicity or toxicity characteristics. Finally, the affinity of fuspMA to the MHC I and II and TLRs molecules validated by the molecular docking procedure. In conclusion, it seems the designed multiepitope DNA vaccine could have a chance to be introduced as an efficient vaccine against COVID-19 after more in vivo evaluations.

2.
Int Microbiol ; 24(1): 115-122, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33150553

ABSTRACT

V. cholerae O1 is a gram-negative bacilli that causes an acute gastrointestinal disease called cholera. V. cholerae can enter into the biofilm phase in a period of life; hence, it is challenging to recognize these bacteria. Accordingly, using localized surface plasmon resonance (LSPR) features of the nanoparticles, an accurate detection method based on the antigen-antibody reaction was used. Ordinarily, immobilization of plasmonic nanoparticles by monoclonal antibodies was performed and UV-visible spectroscopy, dynamic light scattering (DLS), and zeta potential (Zp) measurements verified the conjugation process. In the vicinity of several concentrations of V. cholerae O1, the consistency of the engineered nanobioprobe was then investigated using LSPR monitoring and colorimetric assay. Finally, the ELISA and PCR techniques contrasted the sensitivity of nanobiosensors. The results showed that by applying monoclonal antibodies as a sensor feature, the nanobioprobe showed high sensitivity to target bacterial analysis. Thus, the limit of detection in this immunoassay-based biosensor was calculated to be a sharp reduction in the absorption of 10 CFU/mL of V. cholerae O1 with approximately 5 nm of redshift, while the shift of light refraction in the LSPR band was extended to approximately 18 nm by raising the antigen concentration to 104 CFU/mL. This LSPR biosensor can therefore be used for V. cholerae O1 (Inaba strain) detection as a simple, sensitive, and reliable diagnostic tool. In conclusion, the built biosensor will facilitate and speed up V. cholerae O1 (Inaba strain) classification by controlling the specific antigen to prevent the unintended spread of cholera disease.


Subject(s)
Biosensing Techniques/methods , Cholera/microbiology , Immunoassay/methods , Surface Plasmon Resonance/methods , Vibrio cholerae O1/isolation & purification , Cholera/diagnosis , Humans , Vibrio cholerae O1/chemistry , Vibrio cholerae O1/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...