Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Genet Test Mol Biomarkers ; 25(4): 302-306, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33877895

ABSTRACT

Aim: Circulating microRNA-21 (miR-21) has been utilized as a diagnostic tool in the assessment of heart failure (HF). Blood constitution may be altered when HF occurs and miR-21 may affect hematopoiesis. Sample hemolysis may influence the determination of circulating miRNAs, challenging the diagnostic use of miRNAs. Methods: We examined the relationship between blood measurements and miR-21 levels in ambulant chronic HF patients with reduced ejection fraction (HFrEF; n = 19). Healthy volunteers (n = 11) served as controls. Serum miR-21 levels were measured through quantitative reverse transcription polymerase chain reaction (RT-qPCR) and we calculated the hemolysis score (H-score). Study was approved by an Institutional Review Board (EK FaF UK 02/2018). Results: MiR-21 serum levels were reduced in HFrEF patients compared with the controls (p < 0.05), without relationship to New York Heart Association class, left ventricular ejection fraction or N-terminal prohormone of brain natriuretic peptide levels. MiR-21 levels decreased markedly in anemic patients, compared with those with normal hematocrits (p < 0.05). We found a significant relationship between miR-21 to hematocrit (p < 0.05) and hemoglobin concentration (p < 0.05). Importantly, we found a correlation between hematocrit and sample H-score (p < 0.05) in the cohort of HFrEF patients; however, there was no correlation between hemolysis and miR-21. Conclusion: Circulating miR-21 levels were decreased in HFrEF patients and hematocrit was identified as a factor associated with this abnormality. This suggests that miR-21 mirrors other characteristics of HFrEF patients rather than the standard identifiers of HF severity and progression.


Subject(s)
Heart Failure/genetics , Hematocrit/methods , MicroRNAs/blood , Aged , Biomarkers/blood , Circulating MicroRNA/blood , Circulating MicroRNA/genetics , Cohort Studies , Female , Heart Failure/blood , Heart Failure/metabolism , Humans , Male , MicroRNAs/genetics , Middle Aged , Natriuretic Peptide, Brain/blood , Peptide Fragments/blood , Real-Time Polymerase Chain Reaction/methods , Slovakia/epidemiology , Stroke Volume , Ventricular Function, Left
2.
Eur J Pharmacol ; 714(1-3): 472-7, 2013 Aug 15.
Article in English | MEDLINE | ID: mdl-23834779

ABSTRACT

Anthracycline therapy is limited by a cardiotoxicity that may eventually lead to chronic heart failure which is thought to be prevented by ACE inhibitors (ACEi). However, the protective effect of ACEi in early stages of this specific injury remains elusive. Activated nuclear transcription factors peroxisome proliferator-activated receptors (PPAR) regulate cellular metabolism, but their involvement in anthracycline cardiomyopathy has not been investigated yet. For this purpose, Wistar rats were administered with daunorubicin (i.p., 3 mg/kg, in 48 h intervals) or co-administered with daunorubicine and enalaprilat (i.p., 5 mg/kg in 12 h intervals). Control animals received vehicle. Left ventricular function was measured invasively under anesthesia. Cell-shortening was measured by videomicroscopy in isolated cardiomyocytes. Expression of PPARs mRNA in cardiac tissue was measured by Real-Time PCR. Although the hemodynamic parameters of daunorubicin-treated rats remained altered upon ACEi co-administration, ACEi normalized daunorubicin-induced QT prolongation. On cellular level, ACEi normalized altered basal and isoproterenol-stimulated cardiac cell shortening in daunorubicine-treated group. Moreover, anthracycline administration significantly up-regulated heart PPARα mRNA and its expression remained increased after ACEi co-administration. On the other hand, the expression of cardiac PPARß/δ was not altered in anthracycline-treated animals, whereas co-administration of ACEi increased its expression. Conclusively, effect of ACEi can be already detected in sub-acute phase of anthracycline-induced cardiotoxicity. Altered expression of heart PPARs may suggest these nuclear receptors as a novel target in anthracycline cardiomyopathy.


Subject(s)
Cardiomyopathies/genetics , Cardiomyopathies/physiopathology , Daunorubicin/pharmacology , Enalaprilat/pharmacology , Gene Expression Regulation/drug effects , Heart/drug effects , Heart/physiopathology , PPAR delta/genetics , PPAR-beta/genetics , Animals , Cardiomyopathies/chemically induced , Disease Models, Animal , Hemodynamics/drug effects , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...