Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 130(22): 226301, 2023 Jun 02.
Article in English | MEDLINE | ID: mdl-37327420

ABSTRACT

Electron-hole plasma expansion with velocities exceeding c/50 and lasting over 10 ps at 300 K was evidenced by time-resolved terahertz spectroscopy. This regime, in which the carriers are driven over >30 µm is governed by stimulated emission due to low-energy electron-hole pair recombination and reabsorption of the emitted photons outside the plasma volume. At low temperatures a speed of c/10 was observed in the regime where the excitation pulse spectrally overlaps with emitted photons, leading to strong coherent light-matter interaction and optical soliton propagation effects.


Subject(s)
Arsenicals , Gallium , Photons , Electrons
2.
Nanoscale Adv ; 5(11): 2933-2940, 2023 May 30.
Article in English | MEDLINE | ID: mdl-37260493

ABSTRACT

Terahertz steady-state and time-resolved conductivity and permittivity spectra were measured in 3D graphene networks assembled in free-standing covalently cross-linked graphene aerogels. Investigation of a transition between reduced-graphene oxide and graphene controlled by means of high-temperature annealing allowed us to elucidate the role of defects in the charge carrier transport in the materials. The THz spectra reveal increasing conductivity and decreasing permittivity with frequency. This contrasts with the Drude- or Lorentz-like conductivity typically observed in various 2D graphene samples, suggesting a significant contribution of a relaxational mechanism to the conductivity in 3D graphene percolated networks. The charge transport in the graphene aerogels exhibits an interplay between the carrier hopping among localized states and a Drude contribution of conduction-band carriers. Upon photoexcitation, carriers are injected into the conduction band and their dynamics reveals picosecond lifetime and femtosecond dephasing time. Our findings provide important insight into the charge transport in complex graphene structures.

3.
Nanoscale ; 11(40): 18550-18558, 2019 Oct 28.
Article in English | MEDLINE | ID: mdl-31363719

ABSTRACT

Introduction of in situ HCl etching to an epitaxial growth process has been shown to suppress radial growth and improve the morphology and optical properties of nanowires. In this paper, we investigate the dynamics of photo-generated charge carriers in a series of indium phosphide nanowires grown with varied HCl fluxes. Time resolved photo-induced luminescence, transient absorption and time resolved terahertz spectroscopy were employed to investigate charge trapping and recombination processes in the nanowires. Since the excitation photons generate charges predominantly in less than a half length of the nanowires, we can selectively assess the charge carrier dynamics at their top and bottom. We found that the photoluminescence decay is dominated by the decay of the mobile hole population due to trapping, which is affected by the HCl etching. The hole trapping rate is in general faster at the top of the nanowires than at the bottom. In contrast, electrons remain highly mobile until they recombine non-radiatively with the trapped holes. The slowest hole trapping as well as the least efficient non-radiative recombination was recorded for etching using the HCl molar fraction of χHCl = 5.4 × 10-5.

4.
Phys Chem Chem Phys ; 19(8): 6006-6012, 2017 Feb 22.
Article in English | MEDLINE | ID: mdl-28182179

ABSTRACT

Photoinitiated charge carrier dynamics in ZnO nanoparticles sensitized by CdSe quantum dots is studied using transient absorption spectroscopy and time-resolved terahertz spectroscopy. The evolution of the transient spectra shows that electron injection occurs in a two-step process, where the formation of a charge transfer state (occurring in several picoseconds) is followed by its dissociation within tens of picoseconds. The photoconductivity of electrons injected into the ZnO nanoparticles is lower than that of charges photogenerated directly in ZnO. We conclude that the motion of injected electrons in ZnO nanoparticles is strongly influenced by their interaction with positive charges left in the sensitizing quantum dots.

5.
J Phys Chem Lett ; 3(17): 2442-6, 2012 Sep 06.
Article in English | MEDLINE | ID: mdl-26292130

ABSTRACT

Time-resolved terahertz spectroscopy was employed for the investigation of charge-transport dynamics in benzothiadiazolo-dithiophene polyfluorene ([2,7-(9,9-dioctyl-fluorene)-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)]) (APFO-3) polymers with various chain lengths and in its monomer form, all blended with an electron acceptor ([6,6]-phenyl-C61-butyric acid methyl ester, PCBM). Upon photoexcitation, charged polaron pairs are created, negative charges are transferred to fullerenes, while positive polarons remain on polymers/monomers. Vastly different hole mobility in polymer and monomer blends allows us to distinguish the hole and electron contributions to the carrier mobility.

6.
Phys Chem Chem Phys ; 13(7): 2850-6, 2011 Feb 21.
Article in English | MEDLINE | ID: mdl-21305068

ABSTRACT

Time-resolved terahertz spectroscopy and combination of quantum chemistry modeling and molecular dynamics simulations were used for the determination of charge carrier mobility in poly[methyl(phenyl)silylene]. Using time-resolved THz spectroscopy we established the on-chain charge carrier drift mobility in PMPSi as 0.02 cm(2) V(-1) s(-1). This value is low due to the formation of polarons: the hole is self-trapped in a potential formed by local chain distortion and the transient THz conductivity spectra show signatures of its oscillations within this potential well. This view is supported by the agreement between experimental and calculated values of the on-chain charge carrier mobility.

7.
J Phys Chem B ; 114(15): 5196-205, 2010 Apr 22.
Article in English | MEDLINE | ID: mdl-20353252

ABSTRACT

We combined various experimental (scanning tunneling microscopy and Raman spectroscopy) and theoretical (density functional theory and molecular dynamics) approaches to study the relationships between the base-pairing patterns and the charge transfer properties in DNA 32-mer duplexes that may be relevant for identification and repair of defects in base pairing of the genetic DNA and for DNA use in nanotechnologies. Studied were two fully Watson-Crick (W-C)-paired duplexes, one mismatched (containing three non-W-C pairs), and three with base pairs chemically removed. The results show that the charge transport varies strongly between these duplexes. The conductivity of the mismatched duplex is considerably lower than that of the W-C-paired one despite the fact that their structural integrities and thermal stabilities are comparable. Structurally and thermally much less stable abasic duplexes have still lower conductivity but not markedly different from the mismatched duplex. All duplexes are likely to conduct by the hole mechanism, and water orbitals increase the charge transport probability.


Subject(s)
Oligodeoxyribonucleotides/chemistry , Base Pair Mismatch , Base Pairing , Ion Transport , Molecular Dynamics Simulation , Nanotechnology , Spectrum Analysis, Raman , Thermodynamics , Water/chemistry
8.
Appl Opt ; 43(9): 1965-70, 2004 Mar 20.
Article in English | MEDLINE | ID: mdl-15065728

ABSTRACT

One-dimensional photonic crystals composed of silicon and air layers with and without twinning defect (i.e., a periodicity break where one half of the photonic structure is a mirror image of the other one) are studied by means of terahertz time-domain transmission and reflection spectroscopy. The structure with defect is decomposed into building blocks: two twins and a defect. A phase-sensitive characterization in transmission and reflection allows us to fully determine the transfer matrices of any block and consequently to predict the properties of composed structures regardless of the microstructure of the constituting blocks. It is shown and experimentally demonstrated that the defect level position is controlled by the reflectance phase of the twins. Possible approach of the reflectance phase determination by use of Kramers-Kronig analysis is also discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...