Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ecol ; 23(2): 254-8, 2014 Feb.
Article in English | MEDLINE | ID: mdl-26010467

ABSTRACT

High-throughput sequencing technologies are now allowing us to study patterns of community assembly for diverse microbial assemblages across environmental gradients and during succession. Here we discuss potential explanations for similarities and differences in bacterial and fungal community assembly patterns along a soil chronosequence in the foreland of a receding glacier. Although the data are not entirely conclusive, they do indicate that successional trajectories for bacteria and fungi may be quite different. Recent empirical and theoretical studies indicate that smaller microbes (like most bacteria) are less likely to be dispersal limited than are larger microbes - which could result in a more deterministic community assembly pattern for bacteria during primary succession. Many bacteria are also better adapted (than are fungi) to life in barren, early-successional sediments in that some can fix nitrogen and carbon from the atmosphere - traits not possessed by any fungi. Other differences between bacteria and fungi are discussed, but it is apparent from this and other recent studies of microbial succession that we are a long way from understanding the mechanistic underpinnings of microbial community assembly during ecosystem succession. We especially need a better understanding of global and regional patterns of microbial dispersal and what environmental factors control the development of microbial communities in complex natural systems.


Subject(s)
Bacteria/classification , Ice Cover/microbiology , Mycorrhizae/classification , Soil Microbiology
2.
Extremophiles ; 13(5): 807-16, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19597697

ABSTRACT

High-elevation periglacial soils are among the most extreme soil systems on Earth and may be good analogs for the polar regions of Mars where oligotrophic mineral soils abut with polar ice caps. Here we report on preliminary studies carried out during an expedition to an area where recent glacial retreat has exposed porous mineral soils to extreme, daily freeze-thaw cycles and high UV fluxes. We used in situ methods to show that inorganic nitrogen (NO(3) (-) and NH(4) (+)) was being actively cycled even during a period when diurnal soil temperatures (5 cm depth) ranged from -12 to 27 degrees C and when sub-zero, soil cooling rates reached 1.8 degrees C h(-1) (the most rapid soil cooling rates recorded to date). Furthermore, phylogenetic analyses of microbial phylotypes present at our highest sites (5410 m above sea level) showed the presence of nitrifying bacteria of the genus Nitrospira and newly discovered nitrite-oxidizing Betaproteobacteria. These soils were overwhelmingly dominated (>70% of phylotypes) by photosynthetic bacteria that were related to novel cyanobacteria previously found almost exclusively in other plant-free, high-elevation soils. We also demonstrated that soils from our highest sites had higher potential for mineralizing glutamate and higher microbial biomass than lower elevation soils that had been more recently covered by ice. Overall, our findings indicate that a diverse and robustly functioning microbial ecosystem is present in these previously unstudied high-elevation soils.


Subject(s)
Bacteria/isolation & purification , Soil Microbiology , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Betaproteobacteria/classification , Betaproteobacteria/genetics , Betaproteobacteria/isolation & purification , Betaproteobacteria/metabolism , Biomass , Carbon/metabolism , Cold Climate , Cyanobacteria/classification , Cyanobacteria/genetics , Cyanobacteria/isolation & purification , Cyanobacteria/metabolism , DNA, Bacterial/genetics , DNA, Bacterial/isolation & purification , Glutamic Acid/metabolism , Ice Cover/microbiology , Nitrogen/metabolism , Peru , Phylogeny
3.
Ecology ; 88(6): 1379-85, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17601130

ABSTRACT

Soil microbial communities have the metabolic and genetic capability to adapt to changing environmental conditions on very short time scales. In this paper we combine biogeochemical and molecular approaches to reveal this potential, showing that microbial biomass can turn over on time scales of days to months in soil, resulting in a succession of microbial communities over the course of a year. This new understanding of the year-round turnover and succession of microbial communities allows us for the first time to propose a temporally explicit N cycle that provides mechanistic hypotheses to explain both the loss and retention of dissolved organic N (DON) and inorganic N (DIN) throughout the year in terrestrial ecosystems. In addition, our results strongly support the hypothesis that turnover of the microbial community is the largest source of DON and DIN for plant uptake during the plant growing season. While this model of microbial biogeochemistry is derived from observed dynamics in the alpine, we present several examples from other ecosystems to indicate that the general ideas of biogeochemical fluxes being linked to turnover and succession of microbial communities are applicable to a wide range of terrestrial ecosystems.


Subject(s)
Bacteria/growth & development , Climate , Ecosystem , Nitrogen/metabolism , Soil Microbiology , Bacteria/metabolism , Biodiversity , Biomass , Plant Development , Population Density , Population Dynamics , Seasons
4.
Appl Environ Microbiol ; 70(2): 1160-8, 2004 Feb.
Article in English | MEDLINE | ID: mdl-14766601

ABSTRACT

Integrons are horizontal gene transfer (HGT) systems containing elements necessary for site-specific recombination and expression of foreign DNA. The overall phylogenetic distribution of integrons and range of genes that can be transferred by integrons are unknown. This report contains an exploration of integrons in an environmental microbial community and an investigation of integron evolution. First, using culture-independent techniques, we explored the diversity of integrons and integron-transferred genes in heavy-metal-contaminated mine tailings. Using degenerate primers, we amplified integron integrase genes from the tailings. We discovered 14 previously undescribed integrase genes, including six novel gene lineages. In addition, we found 11 novel gene cassettes in this sample. One of the gene cassettes that we sequenced is similar to a gene that codes for a step in a pathway for nitroaromatic catabolism, a group of compounds associated with mining activity. This suggests that integrons may be important for gene transfer in response to selective pressures other than the presence of antibiotics. We also investigated the evolution of integrons by statistically comparing the phylogenies of 16S rRNA and integrase genes from the same organisms, using sequences from GenBank and various sequencing projects. We found significant differences between the organismal (16S rRNA) and integrase trees, and we suggest that these differences may be due to HGT.


Subject(s)
Bacteria/genetics , Genetic Variation , Integrons/genetics , Mining , Soil Microbiology , Soil Pollutants , Bacteria/classification , Bacteria/enzymology , DNA, Bacterial/analysis , Evolution, Molecular , Gold , Integrases/genetics , Metals, Heavy/analysis , Molecular Sequence Data , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
5.
Appl Environ Microbiol ; 68(12): 6462-5, 2002 Dec.
Article in English | MEDLINE | ID: mdl-12450879

ABSTRACT

Interruptions in three nitrate reductase-related genes, narH, narJ, and moaE, inhibited heterotrophic nitrification in Pseudomonas strain M19. No nitrate was detected in the medium, and nitrification proceeded in the presence of a nitrate reductase inhibitor. Heterotrophic nitrification was greatly stimulated by the addition of nitrate.


Subject(s)
Alcohol Dehydrogenase , Bacterial Proteins/genetics , Nitrate Reductases/genetics , Nitrogen/metabolism , Pseudomonas/metabolism , Conjugation, Genetic , DNA Transposable Elements , Nitrate Reductase , Pseudomonas/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...