Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
2.
Cell Res ; 29(10): 804-819, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31444470

ABSTRACT

In vivo genome editing represents a powerful strategy for both understanding basic biology and treating inherited diseases. However, it remains a challenge to develop universal and efficient in vivo genome-editing tools for tissues that comprise diverse cell types in either a dividing or non-dividing state. Here, we describe a versatile in vivo gene knock-in methodology that enables the targeting of a broad range of mutations and cell types through the insertion of a minigene at an intron of the target gene locus using an intracellularly linearized single homology arm donor. As a proof-of-concept, we focused on a mouse model of premature-aging caused by a dominant point mutation, which is difficult to repair using existing in vivo genome-editing tools. Systemic treatment using our new method ameliorated aging-associated phenotypes and extended animal lifespan, thus highlighting the potential of this methodology for a broad range of in vivo genome-editing applications.


Subject(s)
Gene Editing/methods , Animals , CRISPR-Cas Systems/genetics , DNA Repair , Dependovirus/genetics , GATA3 Transcription Factor/genetics , Gene Knock-In Techniques , Genetic Therapy/methods , Genetic Vectors/metabolism , Human Embryonic Stem Cells , Humans , Introns , Mice , Mice, Inbred C57BL , Mice, Inbred ICR , Neurons/cytology , Neurons/metabolism , RNA, Guide, Kinetoplastida/metabolism , Rats , Tubulin/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...