Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Zoology (Jena) ; 161: 126132, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37931560

ABSTRACT

Reproduction in female mammals is characterized by major changes in steroid hormone concentrations, which can be linked to fluctuations in energy expenditure (EE). Estradiol and cortisol can increase EE and metabolic rates (MRs), but knowledge on MR changes during the estrous cycle and gestation is scarce for many species. This also applies to the domestic guinea pig, a species exhibiting an exceptional estrous cycle among rodents. In this study, MRs were measured through oxygen (O2) consumption in female guinea pigs during different reproductive stages. Mean O2 consumption over 2.5 h, resting metabolic rate (RMR, lowest and most stable O2 consumption over 3 min), body mass, fecal estrogen and progesterone, and saliva cortisol concentrations were measured in twelve female guinea pigs in a repeated measurements design during diestrus, estrus, and the second trimester of gestation. In estrus, body mass was significantly lower and estrogen and cortisol concentrations were significantly higher compared to diestrus and gestation. Mean O2 consumption and RMR both were significantly increased in estrus compared to diestrus. Additionally, a positive effect of body mass on MRs detected during diestrus and gestation was not found during estrus. Mean O2 consumption was also higher during gestation compared to diestrus, and a significant increase in cortisol concentrations during the 2.5-h MR measurement was recorded. The results indicate that estrus in guinea pigs is energetically demanding, which probably reflects catabolic effects of estrogens and cortisol that uncoupled MRs from body mass. Knowledge on the energetic requirements associated with different reproductive stages is important for future physiological and behavioral studies on female guinea pigs.


Subject(s)
Hydrocortisone , Reproduction , Guinea Pigs , Female , Animals , Reproduction/physiology , Estrogens/metabolism , Estradiol , Progesterone/metabolism , Mammals
2.
Physiol Biochem Zool ; 95(6): 525-535, 2022.
Article in English | MEDLINE | ID: mdl-36179357

ABSTRACT

AbstractHibernators save energy during winter by expressing torpor bouts characterized by strongly reduced body temperature and metabolic rate. Polyunsaturated fatty acids (PUFAs), specifically n-6 PUFAs, are known to positively affect hibernation performance and thereby energy savings predominantly in fat-storing hibernators. Accordingly, hibernators usually retain PUFAs and mobilize monounsaturated fatty acids (MUFAs) or saturated fatty acids (SFAs) during hibernation. In food-storing common hamsters (Cricetus cricetus), however, we previously found that PUFA proportions in white adipose tissue (WAT) decreased during winter, indicating that individuals did mobilize PUFAs. To further investigate these patterns, we analyzed PUFA changes in WAT during hibernation as well as hibernation performance in free-ranging and captive common hamsters with lower prehibernation PUFA proportions compared to those in the previous study. Under controlled conditions, total PUFAs, n-6 PUFAs, and SFAs increased while n-3 PUFAs and MUFAs decreased during hibernation. Higher prehibernation n-6 PUFA proportions resulted in fewer torpor bouts and less time spent in torpor. In free-ranging hamsters, n-6 PUFAs increased while n-3 PUFAs and SFAs decreased during winter. Prehibernation n-6 PUFA proportions, however, did not affect hibernation performance. In summary, these results indicate that the mobilization or retention of n-6 PUFAs during hibernation could depend on their availability in WAT or in the diet before the onset of the hibernation period.


Subject(s)
Fatty Acids, Omega-3 , Hibernation , Adipose Tissue/metabolism , Adipose Tissue, White/metabolism , Animals , Cricetinae , Fatty Acids/metabolism , Fatty Acids, Monounsaturated/metabolism , Fatty Acids, Unsaturated/metabolism
3.
Behav Processes ; 198: 104642, 2022 May.
Article in English | MEDLINE | ID: mdl-35421543

ABSTRACT

Dietary intake of polyunsaturated fatty acids (PUFAs) is crucial for neuronal functions, can positively affect cognition, and reduce glucocorticoid (e.g. corticosterone) concentrations in response to stress. We investigated the effects of walnut oil high in PUFAs on spatial cognition and fecal corticosterone metabolite (FCM) concentrations under non-stressed conditions in rats. Unexpectedly, PUFA-supplemented rats had higher FCM concentrations and elevated concentrations generally impaired learning in the subsequent T-maze task. Statistically adjusting for individual FCM concentrations, however, revealed that learning performance was improved in PUFA-supplemented rats. The results suggest that glucocorticoids can modulate the effects of PUFAs on spatial learning under normal (non-stressed) conditions and call for consideration of basal physiological conditions in spatial learning tasks.


Subject(s)
Corticosterone , Spatial Learning , Animals , Cognition , Corticosterone/pharmacology , Diet , Fatty Acids, Unsaturated/pharmacology , Glucocorticoids , Rats
4.
Horm Behav ; 134: 105025, 2021 08.
Article in English | MEDLINE | ID: mdl-34242874

ABSTRACT

Flaxseed oil is an excellent source of the essential omega-3 polyunsaturated fatty acid (PUFA) alpha-linolenic acid (ALA). Omega-3 PUFAs are important neuronal components and can counteract aggressive, depressive, and anxiety-like behavior, reduce glucocorticoid (e.g. cortisol) concentrations under chronic stress but also increase acute glucocorticoid responses. As glucocorticoids per se and glucocorticoid responsiveness can modulate the establishment of dominance hierarchies, we investigated if flaxseed oil high in ALA can promote social dominance through effects on glucocorticoid concentrations. Two male and two female groups of domestic guinea pigs (n = 9 per group) were maintained on a control or a 5% (w/w) flaxseed oil diet for four weeks. Social behaviors, hierarchy indices, locomotion, and saliva cortisol concentrations were determined during basal group housing conditions and stressful social confrontations with unfamiliar individuals of the other groups. Flaxseed groups had increased basal cortisol concentrations and showed no cortisol increase during social confrontations. Cortisol concentrations in control groups significantly increased during social confrontations. Such higher cortisol responses positively affected individual hierarchy indices in control males. However, flaxseed males became dominant irrespective of cortisol concentrations. In females, the opposite was detected, namely a higher dominant status in control compared to flaxseed females. Open-field- and dark-light-tests for anxiety-like behavior revealed no pronounced differences, but flaxseed males showed the highest locomotor activity. Flaxseed oil as an ALA source sex-specifically promoted social dominance irrespective of cortisol concentrations and responses. The underlying neuronal mechanisms remain to be determined, but a sex-specific energetic advantage may have accounted for this effect.


Subject(s)
Fatty Acids, Omega-3 , Linseed Oil , Animals , Diet , Female , Guinea Pigs , Hydrocortisone , Linseed Oil/pharmacology , Male , Social Dominance
5.
Psychoneuroendocrinology ; 123: 105045, 2021 01.
Article in English | MEDLINE | ID: mdl-33242725

ABSTRACT

The hypothalamic-pituitary-adrenal (HPA)-axis and related glucocorticoid concentrations regulate physiology and behavior, which can be modulated by nutritional conditions, particularly by the dietary fatty acid composition. Omega-3 polyunsaturated fatty acids (PUFAs) have been shown to promote hypothalamic-pituitary-adrenal (HPA)-axis functions, whereas saturated fatty acids (SFAs) in general produce adverse effects and even increase baseline glucocorticoid concentrations. Glucocorticoids (e.g. cortisol) were further documented to modulate the establishment of dominance relationships, while the involvement of dietary fatty acids remains understudied. This study focused on different effects of PUFAs and SFAs on cortisol concentrations and social dominance in male guinea pigs. Three groups of animals were maintained on diets high in PUFAs (10 % w/w walnut oil), SFAs (10 % w/w coconut fat), or on an untreated control diet starting already prenatally. During adolescence, at an age of 60, 90, and 120 days, each individual's saliva cortisol concentrations and hierarchy index (calculated by initiated and received agonistic behavior) were measured during basal group housing conditions and stressful social confrontations with unfamiliar individuals of the other groups. SFA males showed highest baseline cortisol concentrations, lowest cortisol responses to social confrontations, and became subdominant. PUFA and control males showed significant cortisol responses. However, while control males became dominant during social confrontations, the hierarchy index in PUFA males decreased with age. Individual hierarchy indices during consecutive social confrontations revealed a high consistency. The findings presented here indicate that dietary fatty acids differently affect HPA-axis functions and social dominance but the underlying mechanisms remain to be determined.


Subject(s)
Dietary Fats , Fatty Acids , Hydrocortisone , Social Dominance , Animals , Fatty Acids/adverse effects , Fatty Acids/physiology , Fatty Acids, Unsaturated/physiology , Glucocorticoids/metabolism , Guinea Pigs , Hydrocortisone/metabolism , Male
6.
Horm Behav ; 124: 104784, 2020 08.
Article in English | MEDLINE | ID: mdl-32504693

ABSTRACT

Dietary intake of polyunsaturated fatty acids (PUFAs) or saturated fatty acids (SFAs) differently modulates neurophysiological and behavioral functions in response to altered hypothalamic-pituitary-adrenal (HPA)-axis activity and an individual's development. In this context, an individual's social environment, including social interactions and social hierarchies, is closely related to hormone concentrations and possibly interacts with dietary fatty acid effects. We investigated if dietary supplementation with walnut oil (high in PUFAs) and coconut fat (high in SFAs), compared to a control group, affects body mass gain, cortisol and testosterone concentrations, plasma fatty acids, and social behavior in male domestic guinea pigs from adolescence to adulthood. For analyses of cortisol and testosterone concentrations, social interactions were included as covariates in order to consider effects of social behavior on hormone concentrations. Our results revealed that SFAs increased escalated conflicts like fights and stimulated cortisol and testosterone concentrations, which limited body mass gain and first-year survival. PUFAs did not remarkably affect social behavior and hormone concentrations, but enabled the strongest body mass gain, which probably resulted from an energetic advantage. Neither sociopositive nor agonistic behaviors explained age-specific differences in hormone concentrations between groups. However, a high number of subdominant individuals and lower testosterone concentrations were related to increased cortisol concentrations in adult PUFA males. Our findings demonstrate the importance of dietary fatty acids regarding behavioral and endocrine developmental processes and adaptations to the social environment by modulating HPA-axis function and body homeostasis.


Subject(s)
Dietary Fats/pharmacology , Fatty Acids/pharmacology , Sexual Maturation/drug effects , Social Behavior , Aging/drug effects , Aging/physiology , Animal Nutritional Physiological Phenomena , Animals , Fatty Acids, Unsaturated/pharmacology , Guinea Pigs , Hierarchy, Social , Hydrocortisone/analysis , Hydrocortisone/metabolism , Hypothalamo-Hypophyseal System/drug effects , Hypothalamo-Hypophyseal System/metabolism , Male , Pituitary-Adrenal System/drug effects , Pituitary-Adrenal System/metabolism , Saliva/chemistry , Saliva/metabolism , Sexual Maturation/physiology , Testosterone/blood
7.
Br J Nutr ; 120(11): 1240-1251, 2018 12.
Article in English | MEDLINE | ID: mdl-30322410

ABSTRACT

PUFA modulate hypothalamic-pituitary-adrenal (HPA) axis activity and cortisol concentrations and therefore affect physiological stress responses and the regulation of energy balance in the short- and long-term. Especially dietary intake of n-3 PUFA and a lowered n-6:n-3 ratio are highly encouraged due to beneficial and diminishing effects on basal cortisol secretions. However, the time of such effects to occur and how plasma PUFA patterns affect cortisol concentrations in the short-term was rarely investigated. In order to address this, we supplemented forty male and forty female guinea pigs with diets high in the essential PUFA α-linolenic acid (ALA, 18 : 3n-3) and linoleic acid (LA, 18 : 2n-6) for 20 d. Saliva cortisol concentrations in relation to altering plasma PUFA patterns during this time span were analysed in a repeated measurement design both during basal conditions (individual housing) in 5-d intervals and during stressful social confrontations. We detected very fast plasma PUFA accumulation rates, corresponding to the major dietary PUFA, which resulted in plasma PUFA plateau phases after 10 d. ALA negatively and LA positively affected saliva cortisol concentrations throughout the study. A positive effect of the plasma n-6:n-3 ratio on saliva cortisol concentrations was detected during peak plasma PUFA accumulations and social confrontations, while no effects were detected in relation to plasma PUFA plateau phases. These results suggest that the plasma n-6:n-3 ratio diminishes HPA axis activity during altered physiological conditions only and highlights the importance of altering plasma PUFA patterns for HPA axis functions and the control of energy balance and physiological stress.


Subject(s)
Fatty Acids, Unsaturated/blood , Hydrocortisone/metabolism , Saliva/metabolism , Animal Feed , Animals , Behavior, Animal , Diet , Fatty Acids/metabolism , Female , Guinea Pigs , Male , Reproducibility of Results , alpha-Linolenic Acid/metabolism
8.
Sci Rep ; 8(1): 471, 2018 01 11.
Article in English | MEDLINE | ID: mdl-29323260

ABSTRACT

Early ontogenetic periods and postnatal maturation in organisms are sex-specifically sensitive to hypothalamic-pituitary-adrenal (HPA)-axis activities, related glucocorticoid secretions, and their effects on energy balance and homeostasis. Dietary polyunsaturated (PUFAs) and saturated (SFAs) fatty acids potentially play a major role in this context because PUFAs positively affect HPA-axis functions and a shift towards SFAs may impair body homeostasis. Here we show that dietary PUFAs positively affect postnatal body mass gain and diminish negative glucocorticoid-effects on structural growth rates in male guinea pigs. In contrast, SFAs increased glucocorticoid concentrations, which positively affected testes size and testosterone concentrations in males, but limited their body mass gain and first year survival rate. No distinct diet-related effects were detectable on female growth rates. These results highlight the importance of PUFAs in balancing body homeostasis during male's juvenile development, which clearly derived from a sex-specific energetic advantage of dietary PUFA intakes compared to SFAs.


Subject(s)
Dietary Fats , Hydrocortisone/analysis , Aging , Animals , Body Weight/drug effects , Fatty Acids/blood , Fatty Acids, Nonesterified/pharmacology , Fatty Acids, Unsaturated/pharmacology , Female , Guinea Pigs , Hypothalamo-Hypophyseal System/drug effects , Male , Pituitary-Adrenal System/drug effects , Saliva/metabolism , Testis/growth & development , Testis/metabolism , Testosterone/analysis
9.
Reprod Fertil Dev ; 30(8): 1077-1086, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29306361

ABSTRACT

Reproductive functions in female mammals can be significantly affected by the actions of dietary polyunsaturated fatty acids (PUFAs) on steroid hormone secretion rates. Nevertheless, the effects of plasma free PUFAs on the oestrous cycle have seldom been considered. Therefore, in the present study, the diet of domestic guinea pigs was supplemented with high concentrations of different PUFAs and the effects of altered plasma PUFA patterns on steroid hormone concentrations, measured non-invasively, and body mass during oestrus and dioestrus were analysed. The oestrous cycle was characterised by increased oestrogen and cortisol concentrations in oestrus, corroborated by lowest bodyweight, whereas progesterone concentrations were highest in dioestrus. Plasma concentrations of the long-chain PUFAs docosahexaenoic acid (DHA; 22:6 ω3) and arachidonic acid (AA; 20:5 ω6) affected steroid hormone concentrations differently in oestrus and dioestrus. DHA positively affected oestrogen and progesterone concentrations and diminished cortisol concentrations only in oestrus. In contrast, AA negatively affected oestrogen and stimulated cortisol concentrations in oestrus and reduced progesterone concentrations in general. These findings imply selective and opposite contributions of DHA and AA to ovarian functions during different stages of the oestrous cycle, indicating a high biological relevance of plasma free PUFAs in female reproductive function.


Subject(s)
Body Weight/drug effects , Estradiol/blood , Estrous Cycle/drug effects , Fatty Acids, Unsaturated/pharmacology , Progesterone/blood , Animals , Estrous Cycle/blood , Female , Guinea Pigs , Humans , Hydrocortisone/blood
10.
PLoS One ; 12(10): e0185913, 2017.
Article in English | MEDLINE | ID: mdl-29045417

ABSTRACT

Hibernating animals can adjust torpor expression according to available energy reserves. Besides the quantity, the quality of energy reserves could play an important role for overwintering strategies. Common hamsters are food-storing hibernators and show high individual variation in hibernation performance, which might be related to the quality of food hoards in the hibernacula. In this study, we tested the effects of food stores high in fat content, particularly polyunsaturated fatty acids (PUFAs), on hibernation patterns under laboratory conditions. Control animals received standard rodent pellets only, while in the other group pellets were supplemented with sunflower seeds. We recorded body temperature during winter using subcutaneously implanted data loggers, documented total food consumption during winter, and analysed PUFA proportions in white adipose tissue (WAT) before and after the winter period. About half of the individuals in both groups hibernated and torpor expression did not differ between these animals. Among the high-fat group, however, individuals with high sunflower seeds intake strongly reduced the time spent in deep torpor. PUFA proportions in WAT decreased during winter in both groups and this decline was positively related to the time an individual spent in deep torpor. Sunflower seeds intake dampened the PUFA decline resulting in higher PUFA levels in animals of the high-fat group after winter. In conclusion, our results showed that common hamsters adjusted torpor expression and food intake in relation to the total energy of food reserves, underlining the importance of food hoard quality on hibernation performance.


Subject(s)
Eating/physiology , Hibernation/physiology , Adipose Tissue, White/metabolism , Animals , Body Weight , Cricetinae , Diet, High-Fat , Fatty Acids, Unsaturated/metabolism , Female , Seeds , Time Factors , Torpor/physiology
11.
Article in English | MEDLINE | ID: mdl-28373905

ABSTRACT

BACKGROUND: Dietary saturated (SFAs) and polyunsaturated (PUFAs) fatty acids can highly affect reproductive functions by providing additional energy, modulating the biochemical properties of tissues, and hormone secretions. In precocial mammals such as domestic guinea pigs the offspring is born highly developed. Gestation might be the most critical reproductive period in this species and dietary fatty acids may profoundly influence the gestational effort. We therefore determined the hormonal status at conception, the reproductive success, and body mass changes during gestation in guinea pigs maintained on diets high in PUFAs or SFAs, or a control diet. RESULTS: The diets significantly affected the females' plasma fatty acid status at conception, while cortisol and estrogen levels did not differ among groups. SFA females exhibited a significantly lower body mass and litter size, while the individual birth mass of pups did not differ among groups and a general higher pup mortality rate in larger litters was diminished by PUFAs and SFAs. The gestational effort, determined by a mother's body mass gain during gestation, increased with total litter mass, whereas this increase was lowest in SFA and highest in PUFA individuals. The mother's body mass after parturition did not differ among groups and was positively affected by the total litter mass in PUFA females. CONCLUSIONS: While SFAs reduce the litter size, but also the gestational effort as a consequence, PUFA supplementation may contribute to an adjustment of energy accumulations to the total litter mass, which may both favor a mother's body condition at parturition and perhaps increase the offspring survival at birth.

12.
Biol Sex Differ ; 7: 51, 2016.
Article in English | MEDLINE | ID: mdl-27688870

ABSTRACT

BACKGROUND: Unbalanced dietary intakes of saturated (SFAs) and polyunsaturated (PUFAs) fatty acids can profoundly influence the hypothalamic-pituitary-adrenal (HPA)-axis and glucocorticoid secretions in relation to behavioral performances. The beneficial effects of higher dietary PUFA intakes and PUFA:SFA ratios may also affect social interactions and social-living per se, where adequate physiological and behavioral responses are essential to cope with unstable social environmental conditions. METHODS: Effects of diets high in PUFAs or SFAs and a control diet were investigated in male and female guinea pigs after 60 days of supplementation. Plasma fatty acid patterns served as an indicator of the general fatty acid status. HPA-axis activities, determined by measuring saliva cortisol concentrations, social behaviors, and hierarchy ranks were analyzed during group housing of established single-sexed groups and during challenging social confrontations with unfamiliar individuals of the other groups. RESULTS: The plasma PUFA:SFA ratio was highest in PUFA supplemented animals, with female levels significantly exceeding males, and lowest in SFA animals. SFA males and females showed increased saliva cortisol levels and decreased aggressiveness during group housing, while sociopositive behaviors were lowest in PUFA males. Males generally showed higher cortisol increases in response to the challenging social confrontations with unfamiliar individuals than females. While increasing cortisol concentrations were detected in control and PUFA animals, no such effect was found in SFA animals. During social confrontations, PUFA males showed higher levels of agonistic and sociopositive behaviors and also gained higher dominance ranks among males, which was not detected for females. CONCLUSIONS: While SFAs seemingly impaired cortisol responses and social behaviors, PUFAs enabled adequate behavioral responses in male individuals under stressful new social environmental conditions. This sex-specific effect was possibly related to a general sex difference in the n-3 PUFA bioavailability and cortisol responses, which may indicate that males are more susceptible to changing environmental conditions, and shows how dietary fatty acids can shape social systems.

13.
PeerJ ; 4: e1590, 2016.
Article in English | MEDLINE | ID: mdl-26839750

ABSTRACT

Non-invasive measurements of glucocorticoid (GC) concentrations, including cortisol and corticosterone, serve as reliable indicators of adrenocortical activities and physiological stress loads in a variety of species. As an alternative to invasive analyses based on plasma, GC concentrations in saliva still represent single-point-of-time measurements, suitable for studying short-term or acute stress responses, whereas fecal GC metabolites (FGMs) reflect overall stress loads and stress responses after a species-specific time frame in the long-term. In our study species, the domestic guinea pig, GC measurements are commonly used to indicate stress responses to different environmental conditions, but the biological relevance of non-invasive measurements is widely unknown. We therefore established an experimental protocol based on the animals' natural stress responses to different environmental conditions and compared GC levels in plasma, saliva, and fecal samples during non-stressful social isolations and stressful two-hour social confrontations with unfamiliar individuals. Plasma and saliva cortisol concentrations were significantly increased directly after the social confrontations, and plasma and saliva cortisol levels were strongly correlated. This demonstrates a high biological relevance of GC measurements in saliva. FGM levels measured 20 h afterwards, representing the reported mean gut passage time based on physiological validations, revealed that the overall stress load was not affected by the confrontations, but also no relations to plasma cortisol levels were detected. We therefore measured FGMs in two-hour intervals for 24 h after another social confrontation and detected significantly increased levels after four to twelve hours, reaching peak concentrations already after six hours. Our findings confirm that non-invasive GC measurements in guinea pigs are highly biologically relevant in indicating physiological stress responses compared to circulating levels in plasma in the short- and long-term. Our approach also underlines the importance of detailed investigations on how to use and interpret non-invasive measurements, including the determination of appropriate time points for sample collections.

14.
PLoS One ; 10(10): e0140485, 2015.
Article in English | MEDLINE | ID: mdl-26469777

ABSTRACT

Unsaturated fatty acids (UFAs), including omega-3, omega-6 polyunsaturated and omega-9 monounsaturated fatty acids, are essential components and modulators of neuromembranes and may affect various aspects of physiology and cognition. UFAs are suggested to positively affect spatial learning and memory and also to diminish the negative consequences of physiological stress on cognitive abilities. Due to pronounced sex differences in neurophysiological functions, we hypothesize that these UFA-related effects might differ between male and female individuals. We therefore determined the effects of dietary UFAs on cognitive performances in a radial-Y-maze in male and female guinea pigs in relation to saliva cortisol concentrations, a marker for physiological stress. Animals were assigned to four treatment groups and maintained on diets enriched in either chia seeds (omega-3), walnuts (omega-6), or peanuts (omega-9), or a control diet. Female learning abilities throughout a three-day learning phase were positively affected by omega-3 and omega-9, as determined by a decreasing latency to pass the test and the number of conducted errors, while males generally showed distinct learning abilities, irrespective of the diet. A sex difference in learning performances was found in the control group, with males outperforming females, which was not detected in the UFA-supplemented groups. This was paralleled by significantly increased saliva cortisol concentrations in males throughout the cognition test compared to females. Three days after this learning phase, UFA-supplemented males and all females showed unchanged performances, while control males showed an increased latency and therefore an impaired performance. These results were corroborated by pronounced differences in the plasma UFA-status, corresponding to the different dietary treatments. Our findings indicate sex-specific effects of dietary UFAs, apparently enhancing spatial learning abilities only in females and protecting males from long-term memory impairment, while male learning abilities seem to be more strongly affected by an acute physiological stress response to the maze task.


Subject(s)
Fatty Acids, Omega-3/pharmacology , Memory/drug effects , Spatial Learning/drug effects , Animals , Diet , Dietary Fats, Unsaturated , Fatty Acids, Omega-3/administration & dosage , Female , Guinea Pigs , Male , Sex Factors
15.
PLoS One ; 9(12): e116292, 2014.
Article in English | MEDLINE | ID: mdl-25551380

ABSTRACT

Unsaturated fatty acids (UFAs), such as omega-3 and omega-6 poly- and omega-9 monounsaturated fatty acids are important nutrients and major components of neuronal cell membranes. They play a major role in modulating brain functions and physiology and may therefore diminish behavioral and physiological stress reactions in corroboration with decreased cortisol concentrations. Functionally, cortisol itself can modulate several behaviors and also the fatty acid metabolism in the long term. But only little is known about the behavioral and physiological influences of dietary UFAs in a social group, where individuals are regularly exposed to stressful situations. Therefore, the aim of this study was to determine the effects of dietary UFAs on saliva cortisol concentrations and behavioral responses in socially confronted guinea pigs. Three groups of animals were additionally supplemented with 500 mg chia seeds (high in omega-3), walnuts (high in omega-6), or peanuts (high in omega-9) per kg bodyweight each day and compared to a control group. During social confrontation saliva cortisol concentrations significantly increased in all groups, which was accompanied by a loss in bodyweight. However, cortisol levels remained lower in the chia and walnut groups compared to controls. Additionally, the walnut group displayed significantly increased locomotion, while no differences between groups were detected in socio-positive, sexual, or aggressive behaviors. Total plasma omega-3, omega-6, and omega-9 fatty acids were significantly increased in the corresponding groups, due to the dietary supplementations. However, a significant decrease in plasma omega-3 and an increase in plasma n-6 fatty acids were detected in the chia group when comparing the measurements before and after social confrontation. We conclude that both omega-3 and omega-6 polyunsaturated fatty acids can diminish behavioral and physiological stress responses to the social environment, enabling individuals to cope with social stressors, but at the expense of plasma derived omega-3 fatty acids.


Subject(s)
Fatty Acids, Unsaturated/pharmacology , Hydrocortisone/metabolism , Stress, Physiological/drug effects , Animals , Body Weight , Diet Therapy , Fatty Acids, Omega-3/pharmacology , Fatty Acids, Omega-6/pharmacology , Female , Guinea Pigs , Lipid Metabolism , Male , Saliva/chemistry , Social Behavior
SELECTION OF CITATIONS
SEARCH DETAIL
...