Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Physiol ; 10: 1221, 2019.
Article in English | MEDLINE | ID: mdl-31616317

ABSTRACT

Nitric oxide (NO), produced by NO-synthases via L-arginine oxidation, is an essential trigger for signaling processes involved in structural and metabolic changes in muscle fibers. Recently, it was shown that L-arginine administration prevented the decrease in levels of the muscle cytoskeletal proteins, desmin and dystrophin, in rat soleus muscle after 14 days of hindlimb unloading. Therefore, in this study, we investigated the effect of L-arginine administration on the degree of atrophy changes in the rat soleus muscles under unloading conditions, and on the content, gene expression, and phosphorylation level of titin, the giant protein of striated muscles, able to form a third type of myofilaments-elastic filaments. A 7-day gravitational unloading [hindlimb suspension (HS) group] resulted in a decrease in the soleus weight:body weight ratio (by 31.8%, p < 0.05), indicating muscle atrophy development. The content of intact titin (T1) decreased (by 22.4%, p < 0.05) and the content of proteolytic fragments of titin (T2) increased (by 66.7%, p < 0.05) in the soleus muscle of HS rats, compared to control rats. The titin gene expression and phosphorylation level of titin between these two groups were not significantly different. L-Arginine administration under 7-day gravitational unloading decreased the degree of atrophy changes and also prevented the decrease in levels of T1 in the soleus muscle as compared to HS group. Furthermore, L-arginine administration under unloading resulted in increased titin mRNA level (by 76%, p < 0.05) and decreased phosphorylation level of T2 (by 28%, p < 0.05), compared to those in the HS group. These results suggest that administration of L-arginine, the NO precursor, under unloading decreased the degree of atrophy changes, increased gene expression of titin and prevented the decrease in levels of T1 in the rat soleus muscle. The results can be used to search for approaches to reduce the development of negative changes caused by gravitational unloading in the muscle.

2.
Arch Biochem Biophys ; 584: 36-41, 2015 Oct 15.
Article in English | MEDLINE | ID: mdl-26297661

ABSTRACT

Unloading causes rapid skeletal muscle atrophy due to increased protein degradation via activation of calpains and decreased protein synthesis. Our study elucidated role of calpain-1 in the regulation of ubiquitin proteasome pathway (UPP) and anabolic processes mediated by Akt-mTOR-p70S6K and MAPK-Erk (p90RSK) signaling. We hypothesized that blocking calpain will inhibit activation of UPP and decrease protein degradation resulting in reduction of unloading-induced skeletal muscle atrophy. Rats were divided into three groups: non-treated control (C), three day hindlimb suspension with (HSPD) or without (HS) treatment with calpain inhibitor PD150606. When compared with control PD150606 treatment during unloading: 1) attenuated loss of muscle mass, 2) prevented accumulation of calpain-1 (1.8-fold in HS vs 1.3-fold in HSPD) and ubiquitin (2.3-fold in HS vs 0.7-fold in HSPD) mRNA and ubiquitinated proteins (1.6-fold in HS vs 0.8-fold in HSPD), 3) prevented decrease in the pAkt (0.4-fold in HS vs 1-fold in HSPD) and pFOXO3 (0.2-fold in HS vs 1.2-fold in HSPD) levels, 4) prevented increase in MAFbx (3.8-fold in HS vs 1.3-fold in HSPD) and eEF2k (1.8-fold in HS vs 0.6-fold in HSPD) mRNA. Our study indicates that blocking of calpain during unloading decreases skeletal muscle atrophy by inhibiting UPP activation and preserving anabolic signaling.


Subject(s)
Acrylates/pharmacology , Calpain/metabolism , MAP Kinase Signaling System/drug effects , Muscle Proteins/metabolism , Muscular Atrophy/metabolism , Proteolysis/drug effects , Animals , Calpain/antagonists & inhibitors , Immobilization , Male , Muscle Proteins/antagonists & inhibitors , Muscular Atrophy/drug therapy , Muscular Atrophy/pathology , Rats , Rats, Wistar
3.
PLoS One ; 9(8): e104830, 2014.
Article in English | MEDLINE | ID: mdl-25133741

ABSTRACT

After a 16-year hiatus, Russia has resumed its program of biomedical research in space, with the successful 30-day flight of the Bion-M 1 biosatellite (April 19-May 19, 2013). The principal species for biomedical research in this project was the mouse. This paper presents an overview of the scientific goals, the experimental design and the mouse training/selection program. The aim of mice experiments in the Bion-M 1 project was to elucidate cellular and molecular mechanisms, underlying the adaptation of key physiological systems to long-term exposure in microgravity. The studies with mice combined in vivo measurements, both in flight and post-flight (including continuous blood pressure measurement), with extensive in vitro studies carried out shortly after return of the mice and in the end of recovery study. Male C57/BL6 mice group housed in space habitats were flown aboard the Bion-M 1 biosatellite, or remained on ground in the control experiment that replicated environmental and housing conditions in the spacecraft. Vivarium control groups were used to account for housing effects and possible seasonal differences. Mice training included the co-adaptation in housing groups and mice adaptation to paste food diet. The measures taken to co-adapt aggressive male mice in housing groups and the peculiarities of "space" paste food are described. The training program for mice designated for in vivo studies was broader and included behavioral/functional test battery and continuous behavioral measurements in the home-cage. The results of the preliminary tests were used for the selection of homogenous groups. After the flight, mice were in good condition for biomedical studies and displayed signs of pronounced disadaptation to Earth's gravity. The outcomes of the training program for the mice welfare are discussed. We conclude that our training program was effective and that male mice can be successfully employed in space biomedical research.


Subject(s)
Space Flight , Adaptation, Physiological , Animals , Biomedical Research , Eating , Housing, Animal , Male , Mice, Inbred C57BL , Physical Conditioning, Animal , Research Design , Russia , Weightlessness
4.
PLoS One ; 9(4): e94448, 2014.
Article in English | MEDLINE | ID: mdl-24736629

ABSTRACT

Eccentric exercise is known to disrupt sarcolemmal integrity and induce damage of skeletal muscle fibers. We hypothesized that L-arginine (L-Arg; nitric oxide synthase (NOS) substrate) supplementation prior to a single bout of eccentric exercise would diminish exercise-induced damage. In addition, we used N-nitro-L-arginine methyl ester hydrochloride (L-NAME; NOS inhibitor) to clarify the role of native NOS activity in the development of exercise-induced muscle damage. Rats were divided into four groups: non-treated control (C), downhill running with (RA) or without (R) L-Arg supplementation and downhill running with L-NAME supplementation (RN). Twenty four hours following eccentric exercise seven rats in each group were sacrificed and soleus muscles were dissected and frozen for further analysis. The remaining seven rats in each group were subjected to the exercise performance test. Our experiments showed that L-Arg supplementation prior to a single bout of eccentric exercise improved subsequent exercise performance capacity tests in RA rats when compared with R, RN and C rats by 37%, 27% and 13%, respectively. This outcome is mediated by L-Arg protection against post-exercise damage of sarcolemma (2.26- and 0.87-fold less than R and RN groups, respectively), reduced numbers of damaged muscle fibers indicated by the reduced loss of desmin content in the muscle (15% and 25% less than R and RN groups, respectively), and diminished µ-calpain mRNA up-regulation (42% and 30% less than R and RN groups, respectively). In conclusion, our study indicates that L-Arg supplementation prior to a single bout of eccentric exercise alleviates muscle fiber damage and preserves exercise performance capacity.


Subject(s)
Arginine/pharmacology , Dietary Supplements , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/physiology , Physical Conditioning, Animal , Animals , Desmin/metabolism , Dystrophin/metabolism , Gene Expression Regulation/drug effects , HSP70 Heat-Shock Proteins/genetics , HSP90 Heat-Shock Proteins/genetics , Male , Muscle Fibers, Skeletal/cytology , Muscle Fibers, Skeletal/metabolism , NG-Nitroarginine Methyl Ester/pharmacology , Nitric Oxide/metabolism , Nitric Oxide Synthase/metabolism , Proteolysis/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Rats, Wistar
5.
FASEB J ; 26(10): 4295-301, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22751006

ABSTRACT

We hypothesized that pharmacological induction of HSP70 would attenuate soleus atrophy development under 3 d of rat hindlimb unloading. Male Wistar rats were divided into control (C; n=7), 3-d hindlimb unloading (HUL; n=7), HUL with HSP90 inducer administration, 17-allylamino-17-emethoxygeldanamycin (17-AAG; 60 mg/kg, HUL+17-AAG, n=8). The relative weight of soleus muscle to body weight [soleus wt (mg)/body wt (g)] in the HUL group was less than that of the C and HUL+17-AAG groups (P<0.05). We revealed HSP90, HSP70 mRNA decrease in the HUL group (but not the HUL+17-AAG group) vs. C (P<0.05). The unloading resulted in significant increases of µ-calpain and conjugated ubiquitin (Ub) levels (proteins as well as mRNAs) vs. the C group, whereas 17-AAG administration prevented these alterations (studied by SDS-PAGE and RT-PCR). pFOXO3 protein was decreased in the HUL group vs. C, but not in HUL+17-AAG. Content of E3-lygase (MuRF-1, MAFbx) mRNA was increased in both suspended groups. In summary, 17-AAG administration attenuates soleus muscle atrophy, µ-calpain, and Ub increases under hindlimb unloading as well as decrease of pFOXO3.


Subject(s)
Benzoquinones/therapeutic use , Lactams, Macrocyclic/therapeutic use , Muscle, Skeletal/pathology , Muscular Atrophy/drug therapy , Animals , Blotting, Western , Calpain/metabolism , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/genetics , HSP90 Heat-Shock Proteins/metabolism , Hindlimb/drug effects , Hindlimb/metabolism , Hindlimb/pathology , Male , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Muscular Atrophy/metabolism , Rats , Rats, Wistar , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...