Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-27284493

ABSTRACT

BACKGROUND: In recent years, there has been a dramatic increase in abuse of the synthetic cathinone 3,4-methylenedioxypyrovalerone (MDPV), often in combination with other illicit stimulants. PURPOSE: We sought to determine if repeated exposure to MDPV would produce sensitization to the motor stimulant effects of the drug, and whether cross-sensitization would develop with the stimulant effects of methamphetamine (METH). STUDY DESIGN: Male Sprague-Dawley rats were administered MDPV (1 or 5 mg/kg) or saline once daily for 5 days at 24 hour intervals, or were administered MDPV (1 mg/kg) or saline once daily for 5 days at 48 hour intervals. For cross-sensitization experiments, rats were administered METH (1 mg/kg) or MDPV (1 or 5 mg/kg) once daily for 5 days at 48 hour intervals, and following a 5 day incubation period, were given an acute challenge injection of either MDPV (0.5 mg/kg) or METH (0.5 mg/kg), respectively. RESULTS: Rats repeatedly administered MDPV (1 mg/kg) every 48 hours, but not every 24 hours, demonstrated increased motor activity when given either a subsequent challenge of MDPV (0.5 mg/kg i.p.) or METH (0.5 mg/kg), indicating the development of behavioral sensitization and cross-sensitization, respectively. Moreover, rats repeatedly administered METH (1 mg/kg) every 48 hours did not exhibit cross-sensitization to the motor stimulating effects of a subsequent challenge with MDPV (0.5 mg/kg). CONCLUSION: These results suggest that specific patterns of MDPV administration may lead to lasting changes in behavioral responses to subsequent METH exposure.

2.
CNS Neurol Disord Drug Targets ; 14(4): 476-85, 2015.
Article in English | MEDLINE | ID: mdl-25921744

ABSTRACT

Positive and negative allosteric modulators (PAMs and NAMs, respectively) of type 5 metabotropic glutamate receptors (mGluR5) are currently being investigated as novel treatments for neuropsychiatric diseases including drug addiction, schizophrenia, and Fragile X syndrome. However, only a handful of studies have examined the effects of mGluR5 PAMs or NAMs on the structural plasticity of dendritic spines in otherwise naïve animals, particularly in brain regions mediating executive function. In the present study, we assessed dendritic spine density and morphology in pyramidal cells of the medial prefrontal cortex (mPFC) after repeated administration of either the prototypical mGluR5 PAM 3-cyano-N-(1,3-diphenyl-1H-pyrazol-5- yl)benzamide (CDPPB, 20 mg/kg), the clinically utilized mGluR5 NAM 1-(3-chlorophenyl)-3-(3-methyl-5-oxo-4Himidazol- 2-yl)urea (fenobam, 20 mg/kg), or vehicle in male Sprague-Dawley rats. Following once daily treatment for 10 consecutive days, coronal brain sections containing the mPFC underwent diolistic labeling and 3D image analysis of dendritic spines. Compared to vehicle treated animals, rats administered fenobam exhibited significant increases in dendritic spine density and the overall frequency of spines with small (<0.2 µm) head diameters, decreases in frequency of spines with medium (0.2-0.4 µm) head diameters, and had no changes in frequency of spines with large head diameters (>0.4 µm). Administration of CDPPB had no discernable effects on dendritic spine density or morphology, and neither CDPPB nor fenobam had any effect on spine length or volume. We conclude that mGluR5 PAMs and NAMs differentially affect mPFC dendritic spine structural plasticity in otherwise naïve animals, and additional studies assessing their effects in combination with cognitive or behavioral tasks are needed.


Subject(s)
Cell Shape/drug effects , Dendritic Spines/drug effects , Neurons/drug effects , Prefrontal Cortex/drug effects , Receptor, Metabotropic Glutamate 5/metabolism , Allosteric Regulation , Animals , Benzamides/pharmacology , Dendritic Spines/metabolism , Imidazoles/pharmacology , Male , Neurons/cytology , Neurons/metabolism , Prefrontal Cortex/cytology , Prefrontal Cortex/metabolism , Pyrazoles/pharmacology , Rats , Rats, Sprague-Dawley
3.
Addict Biol ; 19(2): 165-74, 2014 Mar.
Article in English | MEDLINE | ID: mdl-22784198

ABSTRACT

Reports of abuse and toxic effects of synthetic cathinones, frequently sold as 'bath salts' or 'legal highs', have increased dramatically in recent years. One of the most widely used synthetic cathinones is 3,4-methylenedioxypyrovalerone (MDPV). The current study evaluated the abuse potential of MDPV by assessing its ability to support intravenous self-administration and to lower thresholds for intracranial self-stimulation (ICSS) in rats. In the first experiment, the rats were trained to intravenously self-administer MDPV in daily 2-hour sessions for 10 days at doses of 0.05, 0.1 or 0.2 mg/kg per infusion. The rats were then allowed to self-administer MDPV under a progressive ratio (PR) schedule of reinforcement. Next, the rats self-administered MDPV for an additional 10 days under short access (ShA; 2 hours/day) or long access (LgA; 6 hours/day) conditions to assess escalation of intake. A separate group of rats underwent the same procedures, with the exception of self-administering methamphetamine (0.05 mg/kg per infusion) instead of MDPV. In the second experiment, the effects of MDPV on ICSS thresholds following acute administration (0.1, 0.5, 1 and 2 mg/kg, i.p.) were assessed. MDPV maintained self-administration across all doses tested. A positive relationship between MDPV dose and breakpoints for reinforcement under PR conditions was observed. LgA conditions led to escalation of drug intake at 0.1 and 0.2 mg/kg doses, and rats self-administering methamphetamine showed similar patterns of escalation. Finally, MDPV significantly lowered ICSS thresholds at all doses tested. Together, these findings indicate that MDPV has reinforcing properties and activates brain reward circuitry, suggesting a potential for abuse and addiction in humans.


Subject(s)
Benzodioxoles/pharmacology , Designer Drugs/pharmacology , Drug-Seeking Behavior/drug effects , Pyrrolidines/pharmacology , Reinforcement, Psychology , Reward , Self Administration/statistics & numerical data , Analysis of Variance , Animals , Benzodioxoles/administration & dosage , Central Nervous System Stimulants/administration & dosage , Designer Drugs/administration & dosage , Dose-Response Relationship, Drug , Electric Stimulation/methods , Infusions, Intravenous , Male , Methamphetamine/administration & dosage , Pyrrolidines/administration & dosage , Rats , Rats, Sprague-Dawley , Reinforcement Schedule , Self Stimulation/drug effects , Substance-Related Disorders/psychology , Time Factors , Synthetic Cathinone
4.
F1000Res ; 2: 84, 2013.
Article in English | MEDLINE | ID: mdl-24358885

ABSTRACT

We investigated the role of metabotropic glutamate receptor type 5 (mGluR5) in methamphetamine-induced behavioral sensitization. The mGluR5 positive allosteric modulator (3-cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl) benzamide (CDPPB) and negative allosteric modulator fenobam were tested in separate experiments. Sprague-Dawley rats were repeatedly injected with 1 mg/kg methamphetamine or saline, and then given a locomotor challenge test using a dose of 0.5 mg/kg methamphetamine. Prior to the challenge test session, rats were injected with CDPPB, fenobam, or a vehicle.  Doses from previous studies showed reduced drug-conditioned behavior; however in this study neither CDPPB nor fenobam pretreatment resulted in an altered expression of behavioral sensitization, indicating a lack of mGluR5 involvement in sensitized methamphetamine-induced locomotion. Additionally, the high dose (30 mg/kg) of fenobam resulted in decreased methamphetamine-induced locomotion in rats regardless of drug exposure history, which suggests evidence of nonspecific behavioral inhibition.

5.
Pharmaceuticals (Basel) ; 6(2): 251-68, 2013 Feb 06.
Article in English | MEDLINE | ID: mdl-24275950

ABSTRACT

Glutamate plays a pivotal role in drug addiction, and the N-methyl-D-aspartate (NMDA) glutamate receptor subtype serves as a molecular target for several drugs of abuse. In this review, we will provide an overview of NMDA receptor structure and function, followed by a review of the mechanism of action, clinical efficacy, and side effect profile of NMDA receptor ligands that are currently in use or being explored for the treatment of drug addiction. These ligands include the NMDA receptor modulators memantine and acamprosate, as well as the partial NMDA agonist D-cycloserine. Data collected to date suggest that direct NMDA receptor modulators have relatively limited efficacy in the treatment of drug addiction, and that partial agonism of NMDA receptors may have some efficacy with regards to extinction learning during cue exposure therapy. However, the lack of consistency in results to date clearly indicates that additional studies are needed, as are studies examining novel ligands with indirect mechanisms for altering NMDA receptor function.

6.
Mol Pharmacol ; 84(4): 582-90, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23894151

ABSTRACT

Kalirin-7 (Kal7) is a Rho-guanine nucleotide exchange factor that is localized in neuronal postsynaptic densities. Kal7 interacts with the NR2B subunit of the NMDA receptor and regulates aspects of dendritic spine dynamics both in vitro and in vivo. Chronic treatment with cocaine increases dendritic spine density in the nucleus accumbens (NAc) of rodents and primates. Kal7 mRNA and protein are upregulated in the NAc following cocaine treatment, and the presence of Kal7 is necessary for the normal proliferation of dendritic spines following cocaine use. Mice that constitutively lack Kal7 [Kalirin-7 knockout mice (Kal7(KO))] demonstrate increased locomotor sensitization to cocaine and a decreased place preference for cocaine. Here, using an intravenous cocaine self-administration paradigm, Kal7(KO) mice exhibit increased administration of cocaine at lower doses as compared with wild-type (Wt) mice. Analyses of mRNA transcript levels from the NAc of mice that self-administered saline or cocaine reveal that larger splice variants of the Kalrn gene are increased by cocaine more dramatically in Kal7(KO) mice than in Wt mice. Additionally, transcripts encoding the NR2B subunit of the NMDA receptor increased in Wt mice that self-administered cocaine but were unchanged in similarly experienced Kal7(KO) mice. These findings suggest that Kal7 participates in the reinforcing effects of cocaine, and that Kal7 and cocaine interact to alter the expression of genes related to critical glutamatergic signaling pathways in the NAc.


Subject(s)
Behavior, Addictive/metabolism , Cocaine/administration & dosage , Guanine Nucleotide Exchange Factors/deficiency , Guanine Nucleotide Exchange Factors/genetics , Up-Regulation/genetics , Animals , Behavior, Addictive/genetics , Behavior, Addictive/psychology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Self Administration
7.
Neuropharmacology ; 66: 290-301, 2013 Mar.
Article in English | MEDLINE | ID: mdl-22659409

ABSTRACT

Recent findings implicate group II metabotropic glutamate receptors (mGluR(2/3)) in the reinforcing effects of psychostimulants and have identified these receptors as potential treatment targets for drug addiction. Here, we investigated the effects of mGluR(2/3) stimulation on cue- and drug-primed reinstatement in rats with different histories of methamphetamine (METH) self-administration training, under two conditions: 16 daily sessions of short access (90 min/day, ShA), or 8 daily sessions of short access followed by 8 sessions of long access (6 h/day, LgA). Following self-administration and subsequent extinction training, rats were pretreated with the selective mGluR(2/3) agonist LY379268 (variable dose, 0-3 mg/kg), exposed to METH-paired cues or a priming injection of METH (1 mg/kg), and tested for reinstatement of METH-seeking behavior. LgA rats self-administered greater amounts of METH during the second half of training, but when pretreated with vehicle, ShA and LgA rats showed cue- and drug-primed reinstatement at equivalent response rates. However, LgA rats demonstrated greater sensitivity to mGluR(2/3) stimulation with attenuated responding during cue-induced reinstatement after 0.3 mg/kg and higher doses of LY379268, whereas ShA rats decreased cue-induced reinstatement behavior following 1.0 mg/kg and 3.0 mg/kg LY379268. Additionally, both LgA and ShA rats exhibited decreased METH-primed reinstatement behavior following 0.3 mg/kg and higher doses of LY379268. A separate group of control rats was trained to self-administer sucrose pellets, and demonstrated attenuated cue-induced sucrose-seeking behavior following 1.0 and 3.0 mg/kg LY379268. Together, the results indicate that LY379268 has differential attenuating effects on cue-induced reinstatement behavior in rats with different histories of METH intake. This article is part of a Special Issue entitled 'Metabotropic Glutamate Receptors'.


Subject(s)
Amino Acids/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Drug-Seeking Behavior/drug effects , Drug-Seeking Behavior/physiology , Methamphetamine/antagonists & inhibitors , Receptors, Metabotropic Glutamate/agonists , Animals , Central Nervous System Stimulants/administration & dosage , Central Nervous System Stimulants/pharmacology , Conditioning, Operant/drug effects , Conditioning, Operant/physiology , Dose-Response Relationship, Drug , Excitatory Amino Acid Agonists/pharmacology , Extinction, Psychological/drug effects , Extinction, Psychological/physiology , Male , Methamphetamine/administration & dosage , Methamphetamine/pharmacology , Rats , Rats, Sprague-Dawley , Receptors, Metabotropic Glutamate/physiology , Reinforcement Schedule , Self Administration/psychology , Sucrose/pharmacology
8.
Psychopharmacology (Berl) ; 225(1): 151-9, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22820868

ABSTRACT

RATIONALE: Methamphetamine (METH) is a highly potent and addictive psychostimulant with severe detrimental effects to the health of users. Currently, METH addiction is treated with a combination of cognitive and behavioral therapies, but these traditional approaches suffer from high relapse rates. Furthermore, there are currently no pharmacological treatment interventions approved by the FDA specifically for the treatment of METH addiction. OBJECTIVES: Metabotropic glutamate receptor 5 (mGluR5) negative allosteric modulators (NAMs) have shown promise in significantly attenuating drug self-administration and drug-seeking in reinstatement paradigms. However, studies assessing the potential efficacy of mGluR5 NAMs that have been tested in human subjects are lacking. The current study sought to assess the effect of the mGluR5 NAM fenobam on METH-seeking behavior. METHODS: Rats were trained to self-administer METH (0.05 mg/kg i.v.), and following extinction, tested for effects of fenobam (5, 10, or 15 mg/kg intraperitoneal) on cue- and drug-induced reinstatement of METH-seeking. To determine if fenobam also alters reinstatement of seeking of natural reinforcers, separate groups of rats were trained to self-administer sucrose or food pellets and were tested for the effects of fenobam on cue-induced reinstatement of sucrose- and food-seeking. RESULTS: Fenobam attenuated drug- and cue-induced reinstatement of METH-seeking behavior at doses of 10 and 15 mg/kg. Fenobam also attenuated cue-induced reinstatement of sucrose- and food-seeking at all doses tested. CONCLUSIONS: The mGluR5 NAM fenobam attenuates the reinstatement of METH-seeking behavior, but these effects may be due to nonspecific suppression of general appetitive behaviors.


Subject(s)
Imidazoles/pharmacology , Methamphetamine/administration & dosage , Receptors, Metabotropic Glutamate/drug effects , Sucrose/administration & dosage , Allosteric Regulation , Animals , Cues , Dose-Response Relationship, Drug , Feeding Behavior , Imidazoles/administration & dosage , Male , Rats , Rats, Sprague-Dawley , Receptor, Metabotropic Glutamate 5 , Receptors, Metabotropic Glutamate/metabolism , Reinforcement Schedule , Self Administration
9.
Front Pharmacol ; 3: 194, 2012.
Article in English | MEDLINE | ID: mdl-23189054

ABSTRACT

Recent studies have implicated glutamate neurotransmission as an important substrate for the extinction of conditioned behaviors, including responding for drug reinforcement. Positive allosteric modulation of the type-5 metabotropic glutamate receptor (mGluR5) in particular has emerged as a treatment strategy for the enhancement of extinction of drug-motivated behaviors. Here, we investigated the effects of the mGluR5 positive allosteric modulator CDPPB, a compound known for its cognitive enhancing effects in rodents, on extinction learning in rats with different histories of methamphetamine (METH) training. Rats were trained to self-administer METH under two conditions: 16 daily sessions of short access (90 min/day, ShA), or eight daily sessions of short access followed by eight sessions of long access (6 h/day, LgA). Control rats self-administered sucrose pellets in daily 30 min sessions. Next, rats were administered vehicle or 30 mg/kg CDPPB prior to seven consecutive daily extinction sessions, subjected to additional extinction sessions to re-establish a post-treatment baseline, and then tested for reinstatement of behavior in the presence of METH- or sucrose-paired cues. Rats were then subjected to a second series of extinction sessions, preceded by vehicle or 30 mg/kg CDPPB, and an additional test for cue-triggered reinstatement. CDPPB treatment resulted in a more rapid extinction of responding on the active lever, especially in the early sessions of the first extinction sequence. However, treatment effects were minimal during subsequent cue reinstatement tests and non-existent during the second series of extinction sessions. Rats with histories of ShA, LgA, and sucrose training expressed similar behavioral sensitivities to CDPPB, with LgA rats demonstrating a modestly higher treatment effect. Positive allosteric modulation of mGluR5 may therefore have some beneficial effects on efforts to facilitate extinction learning and reduce methamphetamine seeking.

10.
J Neurosci ; 32(25): 8532-44, 2012 Jun 20.
Article in English | MEDLINE | ID: mdl-22723693

ABSTRACT

M(1) muscarinic acetylcholine receptors (mAChRs) represent a viable target for treatment of multiple disorders of the central nervous system (CNS) including Alzheimer's disease and schizophrenia. The recent discovery of highly selective allosteric agonists of M(1) receptors has provided a major breakthrough in developing a viable approach for the discovery of novel therapeutic agents that target these receptors. Here we describe the characterization of two novel M(1) allosteric agonists, VU0357017 and VU0364572, that display profound differences in their efficacy in activating M(1) coupling to different signaling pathways including Ca(2+) and ß-arrestin responses. Interestingly, the ability of these agents to differentially activate coupling of M(1) to specific signaling pathways leads to selective actions on some but not all M(1)-mediated responses in brain circuits. These novel M(1) allosteric agonists induced robust electrophysiological effects in rat hippocampal slices, but showed lower efficacy in striatum and no measureable effects on M(1)-mediated responses in medial prefrontal cortical pyramidal cells in mice. Consistent with these actions, both M(1) agonists enhanced acquisition of hippocampal-dependent cognitive function but did not reverse amphetamine-induced hyperlocomotion in rats. Together, these data reveal that M(1) allosteric agonists can differentially regulate coupling of M(1) to different signaling pathways, and this can dramatically alter the actions of these compounds on specific brain circuits important for learning and memory and psychosis.


Subject(s)
Behavior, Animal/drug effects , Benzamides/pharmacology , Biphenyl Compounds/pharmacology , Brain/drug effects , Muscarinic Agonists/pharmacology , Receptor, Muscarinic M1/agonists , Animals , Arrestins/metabolism , CHO Cells , Calcium/metabolism , Cell Line , Corpus Striatum/physiology , Cricetinae , Cricetulus , Extracellular Signal-Regulated MAP Kinases/metabolism , Extracellular Space/physiology , Fear/psychology , Gene Expression Profiling , Hippocampus/physiology , Humans , Male , Maze Learning , Membrane Potentials/physiology , Mice , Mice, Inbred C57BL , Phosphorylation , Prefrontal Cortex/physiology , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...