Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Biomolecules ; 12(1)2022 01 14.
Article in English | MEDLINE | ID: mdl-35053280

ABSTRACT

The effect of He-Ne laser irradiation on fishery parameters as well as on biochemical state, including the lipids and fatty acids, the activity of energy metabolism enzymes and the proteome in the blastula stage and in underyearlings of wild Atlantic salmon after irradiation at the cleavage stage/early blastula (considered as the stages when the cell has a high potential for differentiation) was studied. Low mortality rates of eggs were determined during embryogenesis, as well as increased weight gain and lower morality rates of underyearlings in the experimental group. This is confirmed by changes in a number of interrelated indicators of lipid metabolism: a decrease in total lipids content, including diacylglycerols, triacylglycerols, cholesterol esters, and the phospholipids content remained unchanged. The embryos in the blastula stage (experimental group) had higher aerobic capacity and an increase in pentose phosphate pathway activity. The proteome profiles of eggs in the blastula stage were 131 proteins, of which 48 were significantly identified. The major protein was found to be phosvitin. The proteomes of underyearlings were represented by 2018 proteins, of which 49 were unique for the control and 39 for the experimental group. He-Ne laser irradiation had a strong effect on the contents of histone proteins.


Subject(s)
Fatty Acids , Salmo salar , Animals , Blastula , Helium , Lasers , Neon , Proteome
2.
Biomolecules ; 11(5)2021 05 09.
Article in English | MEDLINE | ID: mdl-34065058

ABSTRACT

New data on lipid and fatty acid profiles are presented, and the dynamics of the studied components in muscles in the males and females of the beaked redfish, Sebastes mentella, in the depth gradient of the Irminger Sea (North Atlantic) is discussed. The contents of the total lipids (TLs), total phospholipids (PLs), monoacylglycerols (MAGs), diacylglycerols (DAGs), triacylglycerols (TAGs), cholesterol (Chol), Chol esters, non-esterified fatty acids (NEFAs), and wax esters were determined by HPTLC; the phosphatidylserine (PS), phosphatidylethanolamine (PE), phosphatidylinositol (PI), phosphatidylcholine (PC), and lysophosphatidylcholine (LPC) were determined by HPLC; and fatty acids of total lipids were determined using GC. The Chol esters prevailed in muscles over the storage TAGs, and the wax ester content was high, which is a characteristic trait of vertically migrating species. Specific dynamics in certain PL in redfish were found to be depended on depth, suggesting that PLs are involved in the re-arrangement of the membrane physicochemical state and the maintenance of motor activity under high hydrostatic pressure. The high contents of DHA and EPA were observed in beaked redfish muscles is the species' characteristic trait. The MUFAs in muscles include dietary markers of zooplankton (copepods)-20:1(n-9) and 22:1(n-11), whose content was found to be lower in fish sampled from greater depths.


Subject(s)
Chromatography, High Pressure Liquid/methods , Fatty Acids/analysis , Lipids/analysis , Muscles/metabolism , Perciformes/metabolism , Seawater/chemistry , Animals
3.
Life (Basel) ; 11(4)2021 Apr 10.
Article in English | MEDLINE | ID: mdl-33920077

ABSTRACT

Photoperiod is associated to phenotypic plasticity of somatic growth in several teleost species, however, the molecular mechanisms underlying this phenomenon are currently unknown. The effect of a continuous lighting (LD 24:0), compared with the usual hatchery lighting (HL) regime, on the growth rate and gene expression of myogenic regulatory factors (MRFs: MyoD1 paralogs, Myf5, and MyoG) myosin heavy chain (MyHC), and MSTN paralogs in the white muscles of hatchery-reared Atlantic salmon yearlings was evaluated over a 6-month period (May to October). The levels of gene expression were determined using real-time PCR. Continuous lighting was shown to have a positive effect on weight gain. MyHC, MyoD1c, MyoD1b, and MSTN1a/b mRNA expression was influenced by the light regime applied. In all the studied groups, a significant positive correlation was observed between the expression levels of MRFs and MSTN paralogs throughout the experiment. The study demonstrated seasonal patterns regarding the simultaneous expression of several MRFs. MyoD1a, MyoG, and MyHC mRNA expression levels were elevated in the mid-October, but MyoD1b/c, and Myf5 mRNA levels decreased by the end of this month. In general, the findings showed that constant lighting affected the regulatory mechanisms of muscle growth processes in salmon.

4.
Biomolecules ; 10(6)2020 06 02.
Article in English | MEDLINE | ID: mdl-32498392

ABSTRACT

The influence of two light regimes, 16:8 h light/dark (LD 16:8) and 24:0 h light/dark (LD 24:0), in comparison to a usual hatchery light regime (HL), on the fatty acids content and weight gain in hatchery-reared underyearlings (at 0+ age) and yearlings (at 1+ age) of Atlantic salmon in the summer-autumn period was studied. The total lipids were analyzed by Folch method, the lipid classes using HPTLC, and the fatty acids of total lipids using GC. The increase in EPA and DHA observed in October in underyearlings and yearlings salmon (especially under LD 24:0) suggests they were physiologically preparing for overwintering. The changes in fatty acids and their ratios in juvenile Atlantic salmon can be used as biochemical indicators of the degree to which hatchery-reared fish are ready to smoltify. These associated with an increase in marine-type specific DHA and EPA, an increase in the 16:0/18:1(n-9) ratio, in correlation with a reduction in MUFAs (mainly 18:1(n-9)). These biochemical modifications, accompanied by fish weight gain, were more pronounced in October in yearlings exposed to continuous light (LD 24:0). The mortality rate was lower in experimental groups of underyearliings with additional lighting. Exposure to prolonged and continuous light did not affect yearlings mortality rate.


Subject(s)
Body Weight , Fatty Acids/analysis , Photoperiod , Salmo salar/growth & development , Salmo salar/metabolism , Animals , Seasons , Weight Gain
5.
Biomolecules ; 10(3)2020 02 28.
Article in English | MEDLINE | ID: mdl-32121136

ABSTRACT

The seasonal dynamic of lipids and their fatty acid constituents in the lipid sac and muscles of pelagic postlarval Leptoclinus maculatus, an ecologically important fish species in the Arctic food nets, in Kongsfjord, Svalbard waters was studied. The determination of the qualitative and quantitative content of the total lipids (TLs), total phospholipids (PLs), triacylglycerols (TAGs), cholesterol (Chol), cholesterol esters (Chol esters) and wax esters was analyzed by TLC, the phosphatidylserine (PS), phosphatidylethanolamine (PE), phosphatidylinositol (PI), phosphatidylcholine (PC), lysophosphatidylcholine (LPC) and sphingomyelin (SM) were determined by HPLC, and fatty acids of total lipids using GC. The lipid sac is a system of cavities filled with lipids, and it is not directly connected to organs of the digestive system. The wall's inner layer is a multinuclear symplast that has a trophic function. The results provide additional knowledge on the role of lipids in the biochemical and physiological adaptation of fish to specific environments and clarify the relationship between fatty acids and the food specialization of postlarvae. Analysis of the fatty acid (FA) profile of TLs in the muscles and lipid sac of daubed shanny pelagic postlarvae showed it to be tissue- and organ-specific, and tightly associated with seasonal variations of environmental factors (temperature conditions and trophic resources).


Subject(s)
Fatty Acids/analysis , Lipids/analysis , Perciformes/physiology , Acclimatization , Animals , Fatty Acids/metabolism , Lipid Metabolism , Seasons , Svalbard
6.
Article in English | MEDLINE | ID: mdl-31465878

ABSTRACT

This study was conducted to characterise the muscle-specific gene expression, energy metabolism level and growth rates of Atlantic salmon Salmo salar L. reared under different photoperiod regimes. The effects of two photoperiod regimes - LD 16:8 (16 h light:8 h dark) and LD 24:0 (24 h light:0 h dark) over a period of 3 months (August to October) on growth, energy metabolism enzyme activities (cytochrome c oxidase, COX; lactate dehydrogenase, LDH; and aldolase) and the gene expression levels of myogenic regulatory factors (MRFs - MyoD1 paralogues (MyoD1a, MyoD1b, MyoD1c), Myf5, MyoG), myostatin paralogues (MSTN-1a, MSTN-1b, MSTN-2a) and the fast skeletal myosin heavy chain (MyHC) in the muscles of Atlantic salmon underyearling fry (0+) were investigated. The experiment was conducted in a fish hatchery with natural variations in water temperature. The results were compared with those obtained in salmon reared under the lighting conditions of a fish hatchery (HL, hatchery lighting). The results revealed that the fry reared under constant light (LD 24:0) grew faster and were bigger at the end of the experiment. Fishes reared within the photoperiod regime LD 16:8 had a lower growth rate. COX activity was lower in fish under the LD 16:8 regime compared with the LD 24:0 group. The LDH and aldolase enzyme activities were higher in the group with constant light in comparison to control in the beginning of September. The expression level for all of the genes studied variated during the duration of the experiment, and MyHC, MyoG, MyoD1a and Myf5 expression depended on the light regime as well. The more noticeable changes in gene expression occurred in October. The MyHC and MyoG mRNA levels increased, accompanied by MyD1c gene expression, in both groups that had additional lighting (LD 16:8 and LD24:0) at the beginning of October and were higher than the HL group. In the HL group, the elevation of MyHC and MyoG mRNA was gradual during October, but there was a sharp increase in Myf5 expression at the beginning of October. MyoD1 paralogues differently expressed during the experiment. The MyoD1a mRNA level was elevated at the end of October along with MyHC and MyoG expression, but MyoD1b and MyoD1c mRNA levels decreased along with Myf5 gene expression. The expression of MSTN paralogues were elevated with increases in MyHC and MRFs transcripts. These findings show that constant light has a positive effect on the growth rate of salmon, affecting the aerobic and anaerobic capacity in their muscles. The alterations in muscle-specific gene expression between the groups with different light indicated that the mechanisms for regulating muscle growth processes in fish depend on photoperiod duration.


Subject(s)
Fish Proteins/biosynthesis , Gene Expression Regulation, Enzymologic/physiology , Muscle Proteins/biosynthesis , Muscle, Skeletal/enzymology , Salmo salar/metabolism , Animals
7.
Article in English | MEDLINE | ID: mdl-28499850

ABSTRACT

Growth-related dynamics of intracellular protease activities in four year classes of the Atlantic salmon (Salmo salar L. 1758) parr and smolts inhabiting salmon rivers of northwestern Russia (the White Sea basin) were studied. Cathepsin B, cathepsin D, proteasome, and calpain activities in the skeletal muscles of salmon were assessed to investigate their relative contribution to the total protein degradation as well as to young fish growth process. It was confirmed that calpain activity dominates in salmon muscles while proteasome plays a minor role, in contrast to terrestrial vertebrates. Calpain and proteasome activities were maximal at the early post-larval stage (in parrs 0+) and declined with age (parrs 1+ through 2+) dropping to the lowest level in salmon smolts. Annual growth increments and proteolytic activities of calpains and proteasome in the muscles of salmon juveniles changed with age in an orchestrated manner, while lysosomal cathepsin activities increased with age. Comparing protease activities and growth increments in salmon parr and smolts we suggested that the partial suppression of the protein degradation could be a mechanism stimulating efficient growth in smoltifying salmon. Growth and smoltification-related dynamics of protease activities was quite similar in salmon populations from studied spawning rivers, such as Varzuga and Indera; however, some habitat-related differences were observed. Growth increments and protease activities varied in salmon parr 0+ (but not on later ages) inhabiting either main rivers or small tributaries apparently due to habitat difference on the resources for fish growth.


Subject(s)
Calpain/metabolism , Cathepsins/metabolism , Fish Proteins/metabolism , Muscle, Skeletal/enzymology , Muscle, Skeletal/growth & development , Peptide Hydrolases/metabolism , Proteasome Endopeptidase Complex/metabolism , Animals , Proteolysis , Salmo salar
8.
Article in English | MEDLINE | ID: mdl-28408166

ABSTRACT

This study was conducted to characterize the features of muscle-specific genes expression during development of brown trout Salmo trutta inhabiting the river Krivoy ruchey (Kola Peninsula, Russia). Gene expression levels of myogenic regulatory factors (MRFs - MyoD1 paralogs (MyoD1a, MyoD1b, MyoD1c), Myf5, myogenin), myostatin paralogs (MSTN-1a, MSTN-1b, MSTN-2a), fast skeletal myosin heavy chain (MyHC) were measured in the white muscles of brown trout parr of ages 0+ (under-yearling), 1+ (yearling) and 2+ (two year old) and smolts of age 2+. Multidirectional changes in MyoD1 and MSTN paralogs expression along with myogenin, Myf 5 and MyHC expression levels in white muscles in parr of trout with age were revealed. The expression of MyoD1c, myogenin, MSTN-2a was the highest in 0+ parr and then decreased. MyoD1a/b expression levels didn't differ between age groups. The simultaneous elevation of MyHC, Myf5, MSTN-1a, and MSTN-1b was found in trout yearlings. In smolts, expression levels of MSTN paralogs, MyHC, Myf5, MyoD1a was lower than in parr. But in contrast, the MyoD1c and myogenin mRNA levels was higher in smolts. The study revealed that there are definite patterns in simultaneous muscle-specific genes expression in age groups of parr and smolts. As MyoD and MSTN paralogs expression changed differently in dependence on age and stage, it was suggested that paralogs of the same gene complementarily control myogenesis during development.


Subject(s)
Gene Expression Regulation, Developmental , Muscle, Skeletal/metabolism , Myogenic Regulatory Factors/genetics , RNA, Messenger/genetics , Trout/metabolism , Aging , Animals , Muscle Development/physiology , Muscle, Skeletal/cytology , Trout/growth & development
9.
Fish Physiol Biochem ; 43(4): 1187-1194, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28343271

ABSTRACT

Although protein degradation limits the rate of muscle growth in fish, the role of proteolytic systems responsible for degrading myofibrillar proteins in skeletal muscle is not well defined. The study herein aims to evaluate the role of calpains (calcium-activated proteases) and proteasomes (ATP-dependent proteases) in mediating muscle protein turnover at different life stages in wild salmonids. Protease activities were estimated in Atlantic salmon (Salmo salar L.) and brown trout (Salmo trutta L.) parr and smolts from the Indera River (Kola Peninsula, Russia). Calpain and proteasome activities in Atlantic salmon skeletal muscles were lower in smolts as compared with parr. Reduced muscle protein degradation accompanying Atlantic salmon parr-smolt transformation appeared to provide intense muscle growth essential for a minimum threshold size achievement that is required for smoltification. Calpain and proteasome activities in brown trout parr and smolts at age 3+ did not significantly differ. However, calpain activity was higher in smolts brown trout 4+ as compared with parr, while proteasome activity was lower. Results suggest that brown trout smoltification does not correspond with intense muscle growth and is more facultative and plastic in comparison with Atlantic salmon smoltification. Obtained data on muscle protein degradation capacity as well as length-weight parameters of fish reflect differences between salmon and trout in growth and smoltification strategies.


Subject(s)
Muscle, Skeletal/physiology , Proteolysis , Salmonidae/growth & development , Salmonidae/physiology , Aging , Animals , Female , Fish Proteins/metabolism , Gene Expression Regulation, Developmental , Gene Expression Regulation, Enzymologic/physiology , Male , Peptide Hydrolases/metabolism , Proteasome Endopeptidase Complex/genetics , Proteasome Endopeptidase Complex/metabolism
10.
Fish Physiol Biochem ; 43(4): 1117-1130, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28315163

ABSTRACT

This study was conducted to characterize the energy metabolism level and the features of muscle growth regulation during the development of Atlantic salmon (Salmo salar) inhabiting the Indera River (Kola Peninsula, Russia). The activities of aerobic and anaerobic enzymes (cytochrome c oxidase and lactate dehydrogenase) and carbohydrate metabolism enzymes (glucose-6-phosphate dehydrogenase, glycerol-3-phosphate dehydrogenase, and aldolase) were measured in muscle and liver tissue. Gene expression levels of myosin heavy chain (MyHC), myostatin (MSTN-1a), and myogenic regulatory factors (MRFs-MyoD1a, MyoD1b, MyoD1c, Myf5, myogenin) were measured in the white muscles of salmon parr of ages 0+, 1+, 2+, and 3+ and smolts of ages 2+ and 3+. Multidirectional changes in the activity of enzymes involved in aerobic and anaerobic energy metabolism with age were shown in the white muscles of the parr. The cytochrome c oxidase activity was higher in muscles of underyearlings (0+) and yearlings (1+) and decreased in 2+ and 3+ age groups. The activity of lactate dehydrogenase, in contrast, increased with age. The patterns of changes in expression levels of MyoD1a, MyoD1b, myogenin, MyHC, and MSTN-1a at different ages of the parr were similar. Particularly, the expression of these genes peaked in the yearling parr (1+) and then decreased in elder groups. The differences were revealed in parameters studied between the parr and smolts. The level of aerobic and anaerobic metabolism enzyme activities was higher in the white muscles of smolts than in parr. The activity of carbohydrate metabolism enzymes was decreased in the smolts' livers. The expression levels of MyHC, MyoD1a, MyoD1b, and myogenin were lower in smolts at age 2+ compared to parr. These findings expand our knowledge of age-related and stage-related features of energy metabolism and muscle development regulation in young Atlantic salmon in their natural habitat. The results might be used for monitoring of the salmon population during restoration and rearing.


Subject(s)
Aging/physiology , Gene Expression Regulation, Enzymologic/physiology , Muscle Proteins/metabolism , Muscle, Skeletal/enzymology , Salmo salar/growth & development , Animals , Muscle Proteins/genetics , Muscle, Skeletal/metabolism , Russia
11.
Int J Mol Sci ; 17(7)2016 Jun 30.
Article in English | MEDLINE | ID: mdl-27376274

ABSTRACT

The age-specific lipid and fatty acid profiles of juvenile Atlantic salmon at different ages (0+, 1+, and 2+ years) after hatching from nests located in the mainstream of a large Arctic River, the Varzuga River, and resettling to the favorable Sobachji shoal in autumn before overwinter are herein presented. The contemporary methods of the lipid analysis were used: thin layer chromatography and gas chromatography. The results show that the stability of the regulation of important functions in developing organisms is maintained through structural alterations in lipids. These alterations can be considered as a sequence of the modifications and changes in the ratios of certain lipid classes and fatty acids constituents. In general, changes in the lipids and fatty acids (FAs) maintained the physiological limits and controls through the adaptive systems of the organism. The mechanisms of juvenile fish biochemical adaptation to the environmental conditions in the studied biotope include the modification of the energy metabolism and anabolism, and here belongs to the energy characteristics of metabolic processes.


Subject(s)
Fatty Acids/analysis , Lipids/analysis , Salmo salar/metabolism , Animals , Chromatography, Gas , Chromatography, Thin Layer , Rivers , Salmo salar/growth & development
12.
Int J Mol Sci ; 16(8): 17535-45, 2015 Jul 30.
Article in English | MEDLINE | ID: mdl-26263975

ABSTRACT

The present research focused on determining the lipid status of salmon fingerlings (0+) in early development after dispersal form groups of spawning nests in biotopes of different hydrological conditions. The revealed qualitative and quantitative differences in the levels of phospholipids and fatty acids among two generations of Atlantic salmon fingerlings (0+) living in different biotopes of the Arenga River (a tributary of the Varzuga River) may be associated with the peculiarities of their genetically determined processes of the biosynthesis and modification of individual lipid classes and trophoecological factors (food spectrum, quality and availability of food objects, and hydrological regime). The research was organized to observe the dynamics of these developmental changes from ages 0+ to 2+.


Subject(s)
Fatty Acids/genetics , Phospholipids/genetics , Salmo salar/genetics , Animals , Rivers , Salmo salar/growth & development , Salmo salar/metabolism
13.
Environ Sci Pollut Res Int ; 21(23): 13342-52, 2014 Dec.
Article in English | MEDLINE | ID: mdl-24865502

ABSTRACT

The effects of wastewater from a mining and ore-dressing mill on fish in Lake Kostomukshskoe, which is used as a cesspool of circulating water and for storage of industrial wastes produced by the Kostomuksha mining and ore-dressing mill in northwest Russia, were studied. The lake is characterized by heavy mineralization, high pH, elevated levels of K(+), Li(+), SO4 (2-), NO(2-), Cl(-), Li, Mn, and Ni, and the presence of a fine-dispersed mechanical suspension. To assess the impact of contamination on fish and determine the mechanisms of their adaptation, we investigated the biochemical indices and histology of the liver of whitefish (Coregonus lavaretus L.) and pike (Esox lucius L.) inhabiting Lake Kostomukshskoe, downstream Lake Koyvas (64° 47' 30° 59'), and Lake Kamennoe, which is located in a nature preserve and has not been affected by anthropogenic activity (64° 28' 30° 13'). Changes were detected in the activity of metabolic enzymes (cytochrome c oxidase (COX), lactate dehydrogenase, and glucose-6-phosphate dehydrogenase) in the liver. Specifically, the COX activity in the liver of both fish species from the contaminated lake decreased, indicating a low level of aerobic metabolism. Lipid infiltration was the most visible and widespread change observed in the liver of both fish species; therefore, it can be considered a marker of such long-term contamination. Lesions in pike liver demonstrated a wider range of severity than in those of whitefish. In summary, metabolic enzyme activity and histomorphology of the liver of whitefish and pike differed among lakes in a species-specific manner. The changes in enzyme activity and histomorphological alterations in fish that were observed can be applied for evaluation of freshwater systems that may be subjected to mineral pollution.


Subject(s)
Esocidae/metabolism , Liver/enzymology , Salmonidae/metabolism , Water Pollutants, Chemical/metabolism , Water Pollution, Chemical/adverse effects , Animals , Fishes , Fresh Water , Glucosephosphate Dehydrogenase/metabolism , Industrial Waste , Lakes , Liver/pathology , Minerals/metabolism , Mining , Russia
14.
Mar Environ Res ; 96: 38-44, 2014 May.
Article in English | MEDLINE | ID: mdl-24559608

ABSTRACT

Coastal environments of Kandalaksha Gulf in the White Sea (Russia) despite nature conservation efforts are heavily influenced by human activities. Biological effects of complex environmental pollution, including organic substances, heavy metals, and oil hydrocarbons, were assessed in widely distributed marine invertebrates, Gammarus duebeni (Crustacea, Amphipoda) and Mytilus edulis (Mollusca, Bivalvia), collected from a series of anthropogenically-impacted areas and distanced reference sites in Kandalaksha Gulf. The parameters of intracellular protein degradation pathways such as cytosol calpain system and lysosomal cathepsins B (CatB) and cathepsin D (CatD) were studied. The response reactions observed in invertebrates vary in specificity and ranged from adaptive to destructive depending on the total contaminant level and the nature of predominant pollutant. The ecological relevance of studied parameters as biomarkers was confirmed by their ability to indicate both expose to pollutants and adverse effects at the organism level.


Subject(s)
Amphipoda/drug effects , Biomarkers/metabolism , Environmental Exposure , Mytilus edulis/drug effects , Peptide Hydrolases/metabolism , Water Pollutants, Chemical/toxicity , Animals , Chromatography, Gel , Environmental Monitoring , Oceans and Seas , Proteolysis/drug effects , Russia , Species Specificity
15.
Biol Trace Elem Res ; 154(2): 217-25, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23793920

ABSTRACT

The lipid and fatty acid composition of the blue mussels Mytilus edulis L. gills and digestive glands was evaluated after 24 and 72 h of cadmium (Cd) and copper (Cu) exposure. Mussels were exposed to different cadmium (10, 100, and 500 µg/L) and copper (5, 50, and 250 µg/L) concentrations. Similar stress response of predominant membrane phospholipids level as well as polyenoic and non-methylene interrupted (NMI) fatty acids content was observed in mussel gills under both cadmium and copper effects. Increased NMI fatty acids level after 24 h, the metal ions treatment suggests that these acids contribute to the protective response to the membrane oxidative stress caused by accumulation of the metals. The content of cholesterol, some minor membrane phospholipids, and storage lipids (triacylglycerols, TAG) in the mussels' organs alter significantly under the cadmium and copper effect. A two-step response at the digestive glands TAG level depends on the duration of the cadmium and copper treatments (24 and 72 h) on the mussels. The results demonstrate that Cd and Cu impact has adverse effects on gills and digestive glands lipid and fatty acids composition. The type of observed effects varies with the nature and concentration of the metal ions and depends on the role of the metals in the mussels' life activity.


Subject(s)
Cadmium/toxicity , Copper/toxicity , Lipid Metabolism/drug effects , Mytilus edulis/metabolism , Animals , Digestive System/metabolism , Fatty Acids/metabolism , Gills/metabolism , Oxidative Stress/drug effects , Phospholipids/metabolism , Time Factors
16.
Int J Mol Sci ; 14(4): 7048-60, 2013 Mar 27.
Article in English | MEDLINE | ID: mdl-23535338

ABSTRACT

A comparative study of the lipid status (i.e., the total lipid and phospholipid concentrations and the percentage of fatty acids of the total lipids) of adult specimens of daubed shanny (Leptoclinus maculatus) from Svalbard waters (Isfjord) and slender eel blenny (Lumpenus fabricii) from the White Sea (Onega Bay and Tersky shore) was performed to study the metabolism and functions of lipids of these fishes in ontogeny and under various ecological conditions. Slender eel blenny from both areas of the White Sea were distinguished by a high level of sphingomyelin compared with the daubed shanny from Svalbard, and the amount of total phospholipids was higher in slender eel blenny from Onega Bay than in slender eel blenny from the Tersky shore. The extent of saturation and the signature of polyenic fatty acids varied according to the specific species of the Stichaeidae family under study. These results demonstrate the differences in the trophoecological and hydrobiological conditions of habitations of these species and highlighted the importance of considering certain trends in the lipid profiles of these fishes as specific features of the organization of the ecological and biochemical mechanisms of adaptation.


Subject(s)
Altitude , Lipid Metabolism , Perciformes/metabolism , Animals , Cholesterol/metabolism , Fatty Acids/metabolism , Female , Norway , Phospholipids/metabolism , Triglycerides/metabolism
17.
Article in English | MEDLINE | ID: mdl-22702812

ABSTRACT

The heart rate and calpain activity of blue mussels Mytilus edulis from the sublittoral zone, exposed to different levels of water-borne copper and cadmium, was investigated in a long-term experiment. The content of cadmium and copper in the blue mussel was determined using flame and graphite Atomic absorption spectroscopy. The observed concentrations ranged from 2.5 to 89.1 µg/g dry weight for cadmium and from 6.1 to 51.0 µg/g dry weight for copper in the control and highest concentration, respectively. Initially, increase in cardiac activity in response to copper and Cadmium exposure was observed under all pollutant concentrations (5-250 and 10-500 µg/L, respectively). The calpain-like activity in gills and hepatopancreas of the mussels treated with metals changed in dose- and time-dependent manner: from a sharp rise at the 250 µg/L concentration of copper on the first day to a significant decrease under the effect of Cadmium in the concentration of 500 µg/L on the third day of the experiment. These results suggest that: (i) heart rate oscillation may reflect active adaptation of blue mussels to contamination and (ii) animals have different sensitivity to copper and Cadmium according to the role of the metals in the mussels' life activity.


Subject(s)
Cadmium/pharmacology , Copper/metabolism , Mytilus edulis/drug effects , Mytilus edulis/metabolism , Water Pollutants, Chemical/pharmacology , Animals , Arctic Regions , Biomarkers/metabolism , Cadmium Chloride/pharmacology , Calpain/metabolism , Dose-Response Relationship, Drug , Environmental Monitoring , Gills/drug effects , Gills/metabolism , Heart Rate/drug effects , Hepatopancreas/drug effects , Hepatopancreas/metabolism , Myocardium/enzymology , Russia , Water Pollutants, Chemical/metabolism
18.
Fish Physiol Biochem ; 38(5): 1393-407, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22437369

ABSTRACT

Oocyte and liver histomorphology of the daubed shanny (Leptoclinus maculatus) from Isfjorden and Kongsfjorden in Svalbard were investigated during three Arctic seasons: summer (July), autumn (October) and winter (April). Three oocyte developmental phases were observed: primary growth phase, secondary growth phase and maturation phase. We observed four different developmental stages: (1) perinucleolus stage with cortical alveolus formation, (2) lipid droplets formation, (3) vitellogenesis stage and (4) maturation. Late maturation stage of oocytes in the ovaries was from the autumn season. Females accumulated lipids in liver (up to 35.2 % dw) and deposited large amounts of lipids into gonads (up to 52.2 % dw) during maturation. Lipid classes in female gonads changed seasonally, with relative increase in cholesterol during summer and depletion of storage lipids (triacylglycerols and wax esters/cholesterol esters) during the winter. Lipid composition in liver changed during oocyte development and spawning, as neutral lipids were transferred to developing oocytes during summer to autumn. During winter, storage lipids were depleted during starvation. Based on the increase in gonadosomatic index (GSI) with length and observed maturation stages, females seem to mature at a length of about 125-130 mm. The GSI and hepatosomatic index of large females sampled in autumn (September-October) were significantly higher than for females in late winter (April) and spring (May). These results indicate that spawning takes place during winter in Isfjorden and that energy reserves stored in the liver are utilized by females during gonadal development and reproduction.


Subject(s)
Lipids/chemistry , Liver/chemistry , Oogenesis/physiology , Ovary/chemistry , Animals , Arctic Regions , Female , Oceans and Seas , Perciformes , Seasons , Water Pollution
19.
Environ Monit Assess ; 155(1-4): 581-91, 2009 Aug.
Article in English | MEDLINE | ID: mdl-18709499

ABSTRACT

Bivalves have a known ability to accumulate different contaminants from ambient water and can therefore serve as bioindicators. The paper analyses certain biochemical and physiological parameters of blue mussels in response to varying oil product concentrations. The heart rate (HR) of blue mussels from the sublittoral zone exposed to different levels of oil products was investigated in a long-term experiment using non-invasive monitoring. A sharp rise in HR was observed at oil concentrations of 8.0 and 38.0 mg/l. A decreasing in mussel HR under the effect of lower concentrations (0.4 and 1.9 mg/l) was significant on the fourth day. Strong fluctuations of the cardiac activity were noted under all concentrations. After 6 days of oil treatment, tissues of the mussels were sampled to determine the total lipid composition. Low concentrations of oil products produced no reliable changes in the lipid composition whereas high concentrations induced significant changes in the ratio of lipid components (cholesterol and phospholipids).


Subject(s)
Adaptation, Physiological , Mytilus edulis/drug effects , Mytilus edulis/physiology , Petroleum/toxicity , Water Pollutants, Chemical/toxicity , Animals , Environmental Monitoring , Heart Rate/drug effects , Mytilus edulis/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...