Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Chemosphere ; 214: 480-490, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30278402

ABSTRACT

REACH requires information on hazardous properties of substances to be generated avoiding animal testing where possible. It is the objective of the present case study with thiochemicals to extract as much information as possible from available experimental data with fish, daphnia and algae and to fill data gaps for analogues to be registered under REACH in 2018. Based on considerations of chemical similarity and common mode of action (MOA) the data gaps regarding the aquatic toxicity of the thiochemicals were largely closed by trend analysis ("category approach") and read-across within the same group, for example, thioglycolates or mercaptopropionates. Among 16 thiochemicals to be registered by 2018 there are only 2 substances with sufficient data. 36 data gaps for 14 thiochemicals were identified. Most of the required data (>60%) could be estimated by in silico methods. Only 14 tests (6 algae, 6 daphnia, 1 limit fish test and 1 acute fish test) were proposed. When the results of these tests are available it has to be discussed whether 2 further fish (limit) tests are required. For two substances (exposure-based) waiving was suggested. The relatively high toxicity of the thiochemicals is manifested in low predicted no-effect concentrations (PNECs). Only preliminary predicted environmental concentrations (PECs) could be derived for the thiochemicals for which a risk assessment has to be performed (production rate >10 t/y). The preliminary PEC/PNEC ratios indicate no risk for the aquatic compartment at the production site. PECs due to down-stream use must not exceed the estimated PNECs.


Subject(s)
3-Mercaptopropionic Acid/toxicity , Aquatic Organisms/drug effects , Data Mining , Decision Support Techniques , Environmental Exposure/adverse effects , Thioglycolates/toxicity , Water Pollutants, Chemical/toxicity , 3-Mercaptopropionic Acid/analysis , Animals , Convulsants/analysis , Convulsants/toxicity , Daphnia/drug effects , Environmental Monitoring/methods , Europe , Fishes/physiology , Government Regulation , Risk Assessment , Thioglycolates/analysis , Water Pollutants, Chemical/analysis
2.
Sci Total Environ ; 616-617: 97-106, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29107783

ABSTRACT

Aquatic bioconcentration factors (BCFs) are critical in PBT (persistent, bioaccumulative, toxic) and risk assessment of chemicals. High costs and use of more than 100 fish per standard BCF study (OECD 305) call for alternative methods to replace as much in vivo testing as possible. The BCF waiving scheme is a screening tool combining QSAR classifications based on physicochemical properties related to the distribution (hydrophobicity, ionisation), persistence (biodegradability, hydrolysis), solubility and volatility (Henry's law constant) of substances in water bodies and aquatic biota to predict substances with low aquatic bioaccumulation (nonB, BCF<2000). The BCF waiving scheme was developed with a dataset of reliable BCFs for 998 compounds and externally validated with another 181 substances. It performs with 100% sensitivity (no false negatives), >50% efficacy (waiving potential), and complies with the OECD principles for valid QSARs. The chemical applicability domain of the BCF waiving scheme is given by the structures of the training set, with some compound classes explicitly excluded like organometallics, poly- and perfluorinated compounds, aromatic triphenylphosphates, surfactants. The prediction confidence of the BCF waiving scheme is based on applicability domain compliance, consensus modelling, and the structural similarity with known nonB and B/vB substances. Compounds classified as nonB by the BCF waiving scheme are candidates for waiving of BCF in vivo testing on fish due to low concern with regard to the B criterion. The BCF waiving scheme supports the 3Rs with a possible reduction of >50% of BCF in vivo testing on fish. If the target chemical is outside the applicability domain of the BCF waiving scheme or not classified as nonB, further assessments with in silico, in vitro or in vivo methods are necessary to either confirm or reject bioaccumulative behaviour.


Subject(s)
Ecotoxicology/methods , Environmental Monitoring , Fishes , Food Chain , Water Pollutants, Chemical/analysis , Animals , Hydrophobic and Hydrophilic Interactions , Quantitative Structure-Activity Relationship , Risk Assessment
3.
Environ Sci Process Impacts ; 19(3): 429-437, 2017 Mar 22.
Article in English | MEDLINE | ID: mdl-28165522

ABSTRACT

Fish acute toxicity studies are required for environmental hazard and risk assessment of chemicals by national and international legislations such as REACH, the regulations of plant protection products and biocidal products, or the GHS (globally harmonised system) for classification and labelling of chemicals. Alternative methods like QSARs (quantitative structure-activity relationships) can replace many ecotoxicity tests. However, complete substitution of in vivo animal tests by in silico methods may not be realistic. For the so-called baseline toxicants, it is possible to predict the fish acute toxicity with sufficient accuracy from log Kow and, hence, valid QSARs can replace in vivo testing. In contrast, excess toxicants and chemicals not reliably classified as baseline toxicants require further in silico, in vitro or in vivo assessments. Thus, the critical task is to discriminate between baseline and excess toxicants. For fish acute toxicity, we derived a scheme based on structural alerts and physicochemical property thresholds to classify chemicals as either baseline toxicants (=predictable by QSARs) or as potential excess toxicants (=not predictable by baseline QSARs). The step-wise approach identifies baseline toxicants (true negatives) in a precautionary way to avoid false negative predictions. Therefore, a certain fraction of false positives can be tolerated, i.e. baseline toxicants without specific effects that may be tested instead of predicted. Application of the classification scheme to a new heterogeneous dataset for diverse fish species results in 40% baseline toxicants, 24% excess toxicants and 36% compounds not classified. Thus, we can conclude that replacing about half of the fish acute toxicity tests by QSAR predictions is realistic to be achieved in the short-term. The long-term goals are classification criteria also for further groups of toxicants and to replace as many in vivo fish acute toxicity tests as possible with valid QSAR predictions.


Subject(s)
Fishes , Quantitative Structure-Activity Relationship , Toxicity Tests, Acute/methods , Water Pollutants, Chemical/toxicity , Animals , Computer Simulation , Risk Assessment/methods , Water Pollution/legislation & jurisprudence , Water Pollution/prevention & control
4.
Environ Sci Eur ; 28(1): 26, 2016.
Article in English | MEDLINE | ID: mdl-27867807

ABSTRACT

BACKGROUND: The European chemicals' legislation REACH aims to protect man and the environment from substances of very high concern (SVHC). Chemicals like endocrine disruptors (EDs) may be subject to authorization. Identification of (potential) EDs with regard to the environment is limited because specific experimental assessments are not standard requirements under REACH. Evidence is based on a combination of in vitro and in vivo experiments (if available), expert judgement, and structural analogy with known EDs. OBJECTIVES: The objectives of this study are to review and refine structural alerts for the indication of potential estrogenic and androgenic endocrine activities based on in vitro studies; to analyze in vivo mammalian long-term reproduction studies with regard to estrogen- and androgen-sensitive endpoints in order to identify potential indicators for endocrine activity with regard to the environment; to assess the consistency of potential estrogenic and androgenic endocrine activities based on in vitro assays and in vivo mammalian long-term reproduction studies and fish life-cycle tests; and to evaluate structural alerts, in vitro assays, and in vivo mammalian long-term reproduction studies for the indication of potential estrogenic and androgenic endocrine disruptors in fish. RESULTS: Screening for potential endocrine activities in fish via estrogenic and androgenic modes of action based on structural alerts provides similar information as in vitro receptor-mediated assays. Additional evidence can be obtained from in vivo mammalian long-term reproduction studies. Conclusive confirmation is possible with fish life-cycle tests. Application of structural alerts to the more than 33,000 discrete organic compounds of the EINECS inventory indicated 3585 chemicals (approx. 11%) as potential candidates for estrogenic and androgenic effects that should be further investigated. Endocrine activities of the remaining substances cannot be excluded; however, because the structural alerts perform much better for substances with (very) high estrogenic and androgenic activities, there is reasonable probability that the most hazardous candidates have been identified. CONCLUSIONS: The combination of structural alerts, in vitro receptor-based assays, and in vivo mammalian studies may support the priority setting for further assessments of chemicals with potential environmental hazards due to estrogenic and androgenic activities.

5.
Environ Res ; 135: 156-64, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25262089

ABSTRACT

To satisfy REACH requirements a high number of data on chemical of interest should be supplied to the European Chemicals Agency. To organize the various kinds of information and help the registrants to choose the best strategy to obtain the needed information limiting at the minimum the use of animal testing, integrated testing strategies (ITSs) schemes can be used. The present work deals with regulatory data requirements for assessing the hazards of chemicals to the aquatic pelagic environment. We present an ITS scheme for organizing and using the complex existing data available for aquatic toxicity assessment. An ITS to optimize the choice of the correct prediction strategy for aquatic pelagic toxicity is described. All existing information (like physico-chemical information), and all the alternative methods (like in silico, in vitro or the acute-to-chronic ratio) are considered. Moreover the weight of evidence approach to combine the available data is included.


Subject(s)
Chemical Safety/methods , Fresh Water/chemistry , Seawater/chemistry , Toxicity Tests/methods , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity , Biological Oxygen Demand Analysis/methods , Chemical Safety/legislation & jurisprudence , European Union , Government Regulation
6.
Environ Int ; 69: 40-50, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24806447

ABSTRACT

REACH (registration, evaluation, authorisation and restriction of chemicals) regulation requires that all the chemicals produced or imported in Europe above 1 tonne/year are registered. To register a chemical, physicochemical, toxicological and ecotoxicological information needs to be reported in a dossier. REACH promotes the use of alternative methods to replace, refine and reduce the use of animal (eco)toxicity testing. Within the EU OSIRIS project, integrated testing strategies (ITSs) have been developed for the rational use of non-animal testing approaches in chemical hazard assessment. Here we present an ITS for evaluating the bioaccumulation potential of organic chemicals. The scheme includes the use of all available data (also the non-optimal ones), waiving schemes, analysis of physicochemical properties related to the end point and alternative methods (both in silico and in vitro). In vivo methods are used only as last resort. Using the ITS, in vivo testing could be waived for about 67% of the examined compounds, but bioaccumulation potential could be estimated on the basis of non-animal methods. The presented ITS is freely available through a web tool.


Subject(s)
Guidelines as Topic , Hazardous Substances/pharmacokinetics , Organic Chemicals/pharmacokinetics , Toxicity Tests/methods , Animal Testing Alternatives/legislation & jurisprudence , Animal Testing Alternatives/methods , Animal Testing Alternatives/standards , Animals , European Union , Government Regulation , Hazardous Substances/analysis , Hazardous Substances/toxicity , Humans , Mandatory Reporting , Organic Chemicals/analysis , Organic Chemicals/toxicity , Risk Assessment/legislation & jurisprudence , Risk Assessment/methods , Toxicity Tests/standards
7.
Regul Toxicol Pharmacol ; 66(3): 301-14, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23707536

ABSTRACT

This paper presents an inventory of in silico screening tools to identify substance properties of concern under the European chemicals' legislation REACH. The objective is to support the selection and implementation of appropriate tools as building blocks within integrated testing strategies (ITS). The relevant concerns addressed are persistence, bioaccumulation potential, acute and long-term aquatic toxicity, PBT/vPvB properties ((very) persistent, (very) bioaccumulative, toxic), CMR (carcinogenicity, mutagenicity, reproductive toxicity), endocrine disruption and skin sensitisation. The inventory offers a comparative evaluation of methods with respect to the underlying algorithms (how does the method work?) and the applicability domains (when does the method work?) as well as their limitations (when does the method not work?). The inventory explicitly addresses the reliability of predictions of different in silico models for diverse chemicals by applicability domain considerations. The confidence in predictions can be greatly improved by consensus modelling that allows for taking conflicting results into account. The inventory is complemented by a brief discussion of socio-economic tools for assessing the potential efficiency gains of using in silico methods compared to traditional in vivo testing of chemical hazards.


Subject(s)
Environmental Policy , Environmental Pollutants , Hazardous Substances , Models, Theoretical , Toxicity Tests/methods , Animals , Environmental Policy/legislation & jurisprudence , Environmental Pollutants/chemistry , Environmental Pollutants/toxicity , Europe , Government Programs , Government Regulation , Hazardous Substances/chemistry , Hazardous Substances/toxicity , Humans , Predictive Value of Tests , Quantitative Structure-Activity Relationship , Toxicity Tests/standards , Toxicity Tests/statistics & numerical data
8.
Environ Toxicol Chem ; 32(5): 1187-95, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23382013

ABSTRACT

The present study presents a data-oriented, tiered approach to assessing the bioaccumulation potential of chemicals according to the European chemicals regulation on Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH). The authors compiled data for eight physicochemical descriptors (partition coefficients, degradation half-lives, polarity, and so forth) for a set of 713 organic chemicals for which experimental values of the bioconcentration factor (BCF) are available. The authors employed supervised machine learning methods (conditional inference trees and random forests) to derive relationships between the physicochemical descriptors and the BCF values. In a first tier, the authors established rules for classifying a chemical as bioaccumulative (B) or nonbioaccumulative (non-B). In a second tier, the authors developed a new tool for estimating numerical BCF values. For both cases the optimal set of relevant descriptors was determined; these are biotransformation half-life and octanol-water distribution coefficient (log D) for the classification rules and log D, biotransformation half-life, and topological polar surface area for the BCF estimation tool. The uncertainty of the BCF estimates obtained with the new estimation tool was quantified by comparing the estimated and experimental BCF values of the 713 chemicals. Comparison with existing BCF estimation methods indicates that the performance of this new BCF estimation tool is at least as high as that of existing methods. The authors recommend the present study's classification rules and BCF estimation tool for a consensus application in combination with existing BCF estimation methods.


Subject(s)
Environmental Monitoring/methods , Environmental Pollutants/metabolism , Environmental Pollution/statistics & numerical data , Organic Chemicals/metabolism , Trees/metabolism , Biotransformation , Environmental Pollutants/standards , Half-Life , Organic Chemicals/standards
9.
Altern Lab Anim ; 37(5): 557-71, 2009 Nov.
Article in English | MEDLINE | ID: mdl-20017584

ABSTRACT

This report on The Potential of Mode of Action (MoA) Information Derived from Non-testing and Screening Methodologies to Support Informed Hazard Assessment, resulted from a workshop organised within OSIRIS (Optimised Strategies for Risk Assessment of Industrial Chemicals through Integration of Non-test and Test Information), a project partly funded by the EU Commission within the Sixth Framework Programme. The workshop was held in Liverpool, UK, on 30 October 2008, with 35 attendees. The goal of the OSIRIS project is to develop integrated testing strategies (ITS) fit for use in the REACH system, that would enable a significant increase in the use of non-testing information for regulatory decision making, and thus minimise the need for animal testing. One way to improve the evaluation of chemicals may be through categorisation by way of mechanisms or modes of toxic action. Defining such groups can enhance read-across possibilities and priority settings for certain toxic modes or chemical structures responsible for these toxic modes. Overall, this may result in a reduction of in vivo testing on organisms, through combining available data on mode of action and a focus on the potentially most-toxic groups. In this report, the possibilities of a mechanistic approach to assist in and guide ITS are explored, and the differences between human health and environmental areas are summarised.


Subject(s)
Animal Testing Alternatives/methods , Organic Chemicals/chemistry , Organic Chemicals/toxicity , Toxicity Tests/methods , Ecotoxicology/methods , European Union , Humans
10.
Mar Pollut Bull ; 54(8): 1190-6, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17553530

ABSTRACT

Non-eroding silicone-based coatings can effectively reduce fouling of ship hulls and are an alternative to biocidal and heavy metal-based antifoulings. The products, whose formulations and make up are closely guarded proprietary knowledge, consist of a silicone resin matrix and may contain unbound silicone oils (1-10%). If these oils leach out, they can have impacts on marine environments: PDMS are persistent, adsorb to suspended particulate matter and may settle into sediment. If oil films build up on sediments, infiltration may inhibit pore water exchange. PDMS do not bioaccumulate in marine organisms and soluble fractions have low toxicity to aquatic and benthic organisms. At higher exposures, undissolved silicone oil films or droplets can cause physical-mechanic effects with trapping and suffocation of organisms. These 'new' effects are not covered by current assessment schemes. PDMS make the case that very low water solubility and bioavailability do not necessarily preclude damage to marine environments.


Subject(s)
Invertebrates/drug effects , Paint , Silicone Oils/toxicity , Water Pollutants, Chemical/toxicity , Animals , Environment , Marine Biology , Risk Assessment , Seawater/chemistry , Silicone Oils/analysis , Silicone Oils/metabolism , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/metabolism
11.
Environ Sci Pollut Res Int ; 13(3): 192-203, 2006 May.
Article in English | MEDLINE | ID: mdl-16758710

ABSTRACT

BACKGROUND AND SCOPE: Predictive toxicology, particularly quantitative structure-activity relationships (QSARs), require classification of chemicals by mode of action (MOA). MOA is, however, not a constant property of a compound but it varies between species and may change with concentration and duration of exposure. A battery of MOA-specific in-vitro and low-complexity assays, featuring biomolecular targets for major classes of environmental pollutants, provides characteristic responses for (1.) classification of chemicals by MOA, (2.) identification of (eco)toxicity profiles of chemicals, (3.) identification of chemicals with specific MOAs, (4.) indication of most sensitive species, (5.) identification of chemicals that are outliers in QSARs and (6.) selection of appropriate QSARs for predictions. METHODS: Chemicals covering nine distinct modes of toxic action (non-polar non-specific toxicants (n=14), polar non-specific toxicants (n=18), uncouplers of oxidative phosphorylation (n=25), inhibitors of photosynthesis (n=15), inhibitors of acetylcholinesterase (n=14), inhibitors of respiration (n=3), thiol-alkylating agents (n=9), reactives (irritants) (n=8), estrogen receptor agonists (n=9)) were tested for cytotoxicity in the neutralred assay, oxygen consumption in isolated mitochondria, oxygen production in algae, inhibition of AChE, reaction with GSH and activity in the yeast estrogen receptor assay. Data on in-vivo aquatic toxicity (LC50, EC50) towards fish, daphnids, algae and bacteria were collected from the literature for reasons of comparison and reference scaling. RESULTS AND DISCUSSION: In the MOA-specific in-vitro test battery, most test chemicals are specifically active at low concentrations, though multiple effects do occur. Graphical and statistical evaluation of the individual classes versus MOA 1 (non-polar non-specific toxicants) identifies interactions related to predominant MOA. Discriminant analyses (DA) on subsets of the data revealed correct classifications between 70% (in-vivo data) and >90% (in-vitro data). Functional similarity of chemical substances is defined in terms of their (eco)toxicity profiles. Within each MOA class, the compounds share some properties related to the rate-limiting interactions, e.g., steric fit to the target site and/or reactivity with target biomolecules, revealing a specific pattern (fingerprint) of characteristic effects. CONCLUSION: The successful discrimination of toxicant classes by MOA is based on comprehensive characterization of test chemicals' properties related to interactions with target sites. The suite of aquatic in-vivo tests using fish, daphnids, algae and bacteria covers most acute effects, whilst long-term (latent) impacts are generally neglected. With the MOA-specific in-vitro test battery such distinctions are futile, because it focuses on isolated targets, i.e. it indicates the possible targets of a chemical regardless of the timescale of effects. The data analysis indicates that the in-vitro battery covers most effects in vivo and moreover provides additional aspects of the compounds' MOA. RECOMMENDATION AND PERSPECTIVE: Translating in-vitro effects to in-vivo toxicity requires combining physiological and chemical knowledge about underlying processes. Comparison of the specific in-vitro effects of a compound with the respective sensitivities of aquatic organisms indicates particularly sensitive species. Classifications of toxicants by MOA based on physicochemical descriptors provides insight to interactions and directs to mechanistic QSARs.


Subject(s)
Hazardous Substances/classification , Hazardous Substances/toxicity , Water Pollutants, Chemical/classification , Water Pollutants, Chemical/toxicity , Animals , Bacteria , Daphnia , Eukaryota , Perciformes , Toxicity Tests/methods
12.
Environ Toxicol Chem ; 22(8): 1900-15, 2003 Aug.
Article in English | MEDLINE | ID: mdl-12924589

ABSTRACT

Environmental contaminants are frequently encountered as mixtures, and the behavior of chemicals in a mixture may not correspond to that predicted from data on the pure compounds. This paper reviews current quantitative structure-activity relationship (QSAR) methodology for the analysis of mixture toxicity. Interactions of components in a mixture can cause complex and substantial changes in the apparent properties of its constituents, resulting in synergistic or antagonistic effects as opposed to the ideal reference case of additive behavior: concentration addition (CA) and independent action (IA) are two prominent reference models for the evaluation of joint activity, and both have mechanistic support from pharmacology. After discussing graphical tools for analyzing binary mixtures and joint effect indices suitable also for multicomponent mixtures, water solubility and hydrophobicity of mixtures are analyzed with respect to the property contributions of the individual components. With the former, small but significant deviations from ideal behavior are observed even for simple organics, whereas in the case of low concentrations, mixture hydrophobicity was found to agree approximately with the fractional contributions of the components. A variety of studies suggest that mixtures of compounds exerting only one (narcotic or specific) mode of action can be modeled satisfactorily by assuming CA, whereas the interaction of differently acting compounds tends to yield a less than CA joint activity. The QSARs have been used to predict concentrations of components in mixtures from joint effects and defined mixture ratios and have been developed to predict narcotic-type mixture toxicity from molecular descriptors that are calculated as composite properties according to the fractional concentrations of the mixture components. In the case of ionogenic compounds, initial results suggest that CA may serve as a first-order approximation for the joint effect of un-ionized and ionized compound portions.


Subject(s)
Environmental Pollutants/pharmacology , Environmental Pollutants/toxicity , Models, Theoretical , Quantitative Structure-Activity Relationship , Animals , Drug Interactions , Forecasting , Humans
13.
Chemosphere ; 48(8): 865-83, 2002 Sep.
Article in English | MEDLINE | ID: mdl-12222781

ABSTRACT

An inventory of marine biotest methods for the evaluation of dredged material and sediments was compiled on behalf of the Federal Environmental Agency of Germany. Relevant assays were identified from the literature and experts from several countries contributed to a questionnaire survey on established and developing procedures. The biotest methods are applicable to whole sediment, sediment suspension, sediment elutriate, porewater and/or sediment extract. The endpoints cover acute and long-term toxicity, bioaccumulation, endocrine effects, toxic effects on reproduction, carcinogenicity and mutagenicity. Comparative analyses and evaluation of the biotest methods were conducted with regard to their sensitivity, specificity, applicability (regional specificity, availability and suitability of the test organisms), variability (physicochemical factors, natural factors and factors related to sampling and testing), cost-effectiveness, aspects of animal ethics, standardization (guidelines, intercalibration) and application for monitoring purposes in the areas of the OSPAR and Helsinki Conventions. The available information was integrated to rate the validity of the methods, their relevance for assessing impacts on ecosystems and the suitability of the methods for the evaluation of marine sediments and dredged material. Based on the rating of the individual bioassays, a tiered testing is suggested in a hierarchical approach representing a variety in taxa, biological processes and exposure routes, thereby covering the cellular, species, population and community level with a wide discriminatory and sensitivity range. The toxicological significance and complexity increases with the tiers: (1) screening and detection of impacts, (2) characterization of toxic effects, (3) verification of in situ alterations.


Subject(s)
Environmental Monitoring/methods , Geologic Sediments/chemistry , Water Pollutants/toxicity , Animals , Biological Assay/methods , Calibration , Data Collection , Ecosystem , Fishes , Germany , Invertebrates , Sensitivity and Specificity , Toxicity Tests , Transportation
SELECTION OF CITATIONS
SEARCH DETAIL
...