Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 9(1): 13185, 2019 Sep 12.
Article in English | MEDLINE | ID: mdl-31515510

ABSTRACT

Activation of different slip systems in hexagonal close packed (h.c.p.) metals depends primarily on the c/a ratio, which is an intrinsic property that can be altered through alloying addition. In conventional h.c.p. alloys where there is no diffusion-less phase transformation and associated transformation volume change with deformation, the c/a ratio remains constant during deformation. In the present study, c/a ratio and transformation volume change of h.c.p. epsilon martensite phase in transformative high entropy alloys (HEAs) were quantified as functions of alloy chemistry, friction stir processing and tensile deformation. The study revealed that while intrinsic c/a is dependent on alloying elements, c/a of epsilon in transformative HEAs changes with processing and deformation. This is attributed to transformation volume change induced dependence of h.c.p. lattice parameters on microstructure and stress state. Lower than ideal c/a ratio promotes non-basal pyramidal 〈c + a〉 slip and deformation twinning in epsilon phase of transformative HEAs. Also, a unique twin-bridging mechanism was observed, which provided experimental evidence supporting existing theoretical predictions; i.e., geometrical factors combined with grain orientation, c/a ratio and plastic deformation can result in characteristic twin boundary inclination at 45-50°.

SELECTION OF CITATIONS
SEARCH DETAIL
...