Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
Add more filters











Publication year range
1.
ACS Appl Mater Interfaces ; 16(38): 51639-51648, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39277871

ABSTRACT

CO2 capture requires materials with high adsorption selectivity and an industrial ease of implementation. To address these needs, a new class of porous materials was recently developed that combines the fluidity of solvents with the porosity of solids. Type 3 porous liquids (PLs) composed of solvents and metal-organic frameworks (MOFs) offer a promising alternative to current liquid carbon capture methods due to the inherent tunability of the nanoporous MOFs. However, the effects of MOF structural features and solvent properties on CO2-MOF interactions within PLs are not well understood. Herein experimental and computational data of CO2 gas adsorption isotherms were used to elucidate both solvent and pore structure influences on ZIF-based PLs. The roles of the pore structure including solvent size exclusion, structural environment, and MOF porosity on PL CO2 uptake were examined. A comparison of the pore structure and pore aperture was performed using ZIF-8, ZIF-L, and amorphous-ZIF-8. Adsorption experiments here have verified our previously proposed solvent size design principle for ZIF-based PLs (1.8× ZIF pore aperture). Furthermore, the CO2 adsorption isotherms of the ZIF-based PLs indicated that judicious selection of the pore environment allows for an increase in CO2 selectivity greater than expected from the individual PL components or their combination. This nonlinear increase in the CO2 selectivity is an emergent behavior resulting from the complex mixture of components specific to the ZIF-L + 2'-hydroxyacetophenone-based PL.

2.
ACS Mater Au ; 4(2): 224-237, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38496053

ABSTRACT

Porous liquids (PLs), which are solvent-based systems that contain permanent porosity due to the incorporation of a solid porous host, are of significant interest for the capture of greenhouse gases, including CO2. Type 3 PLs formed by using metal-organic frameworks (MOFs) as the nanoporous host provide a high degree of chemical turnability for gas capture. However, pore aperture fluctuation, such as gate-opening in zeolitic imidazole framework (ZIF) MOFs, complicates the ability to keep the MOF pores available for gas adsorption. Therefore, an understanding of the solvent molecular size required to ensure exclusion from MOFs in ZIF-based Type 3 PLs is needed. Through a combined computational and experimental approach, the solvent-pore accessibility of exemplar MOF ZIF-8 was examined. Density functional theory (DFT) calculations identified that the lowest-energy solvent-ZIF interaction occurred at the pore aperture. Experimental density measurements of ZIF-8 dispersed in various-sized solvents showed that ZIF-8 adsorbed solvent molecules up to 2 Å larger than the crystallographic pore aperture. Density analysis of ZIF dispersions was further applied to a series of possible ZIF-based PLs, including ZIF-67, -69, -71(RHO), and -71(SOD), to examine the structure-property relationships governing solvent exclusion, which identified eight new ZIF-based Type 3 PL compositions. Solvent exclusion was driven by pore aperture expansion across all ZIFs, and the degree of expansion, as well as water exclusion, was influenced by ligand functionalization. Using these results, a design principle was formulated to guide the formation of future ZIF-based Type 3 PLs that ensures solvent-free pores and availability for gas adsorption.

3.
ACS Appl Mater Interfaces ; 15(31): 37675-37686, 2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37498628

ABSTRACT

Chemically robust, low-power sensors are needed for the direct electrical detection of toxic gases. Metal-organic frameworks (MOFs) offer exceptional chemical and structural tunability to meet this challenge, though further understanding is needed regarding how coadsorbed gases influence or interfere with the electrical response. To probe the influence of competitive gases on trace NO2 detection in a simulated flue gas stream, a combined structure-property study integrating synchrotron powder diffraction and pair distribution function analyses was undertaken, to elucidate how structural changes associated with gas binding inside Ni-MOF-74 pores correlate with the electrical response from Ni-MOF-74-based sensors. Data were evaluated for 16 gas combinations of N2, NO2, SO2, CO2, and H2O at 50 °C. Fourier difference maps from a rigid-body Rietveld analysis showed that additional electron density localized around the Ni-MOF-74 lattice correlated with large decreases in Ni-MOF-74 film resistance of up to a factor of 6 × 103, observed only when NO2 was present. These changes in resistance were significantly amplified by the presence of competing gases, except for CO2. Without NO2, H2O rapidly (<120 s) produced small (1-3×) decreases in resistance, though this effect could be differentiated from the slower adsorption of NO2 by the evaluation of the MOF's capacitance. Furthermore, samples exposed to H2O displayed a significant shift in lattice parameters toward a larger lattice and more diffuse charge density in the MOF pore. Evaluating the Ni-MOF-74 impedance in real time, NO2 adsorption was associated with two electrically distinct processes, the faster of which was inhibited by competitive adsorption of CO2. Together, this work points to the unique interaction of NO2 and other specific gases (e.g., H2O, SO2) with the MOF's surface, leading to orders of magnitude decrease in MOF resistance and enhanced NO2 detection. Understanding and leveraging these coadsorbed gases will further improve the gas detection properties of MOF materials.

4.
ACS Appl Mater Interfaces ; 15(27): 32792-32802, 2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37379160

ABSTRACT

Porous liquids (PLs) based on the zeolitic imidazole framework ZIF-8 are attractive systems for carbon capture since the hydrophobic ZIF framework can be solvated in aqueous solvent systems without porous host degradation. However, solid ZIF-8 is known to degrade when exposed to CO2 in wet environments, and therefore the long-term stability of ZIF-8-based PLs is unknown. Through aging experiments, the long-term stability of a ZIF-8 PL formed using the water, ethylene glycol, and 2-methylimidazole solvent system was systematically examined, and the mechanisms of degradation were elucidated. The PL was found to be stable for several weeks, with no ZIF framework degradation observed after aging in N2 or air. However, for PLs aged in a CO2 atmosphere, formation of a secondary phase occurred within 1 day from the degradation of the ZIF-8 framework. From the computational and structural evaluation of the effects of CO2 on the PL solvent mixture, it was identified that the basic environment of the PL caused ethylene glycol to react with CO2 forming carbonate species. These carbonate species further react within the PL to degrade ZIF-8. The mechanisms governing this process involves a multistep pathway for PL degradation and lays out a long-term evaluation strategy of PLs for carbon capture. Additionally, it clearly demonstrates the need to examine the reactivity and aging properties of all components in these complex PL systems in order to fully assess their stabilities and lifetimes.

5.
J Phys Chem A ; 127(13): 2881-2888, 2023 Apr 06.
Article in English | MEDLINE | ID: mdl-36947182

ABSTRACT

Rare-earth terephthalic acid (BDC)-based metal-organic frameworks (MOFs) are promising candidate materials for acid gas separation and adsorption from flue gas streams. However, previous simulations have shown that acid gases (H2O, NO2, and SO2) react with the hydroxyl on the BDC linkers to form protonated acid gases as a potential degradation mechanism. Herein, gas-phase computational approaches were used to identify the formation energies of these secondary protonated acid gases across multiple BDC linker molecules. Formation energies for secondary protonated acid gases were evaluated using both density functional theory (DFT) and correlated wave function methods for varying BDC-gas reaction mechanisms. Upon validation of DFT to reproduce wave function calculation results, rotated conformational linkers and chemically functionalized BDC linkers with -OH, -NH2, and -SH were investigated. The calculations show that the rotational conformation affects the molecule stability. Double-functionalized BDC linkers, where two functional groups are substituted onto BDC, showed varied reaction energies depending on whether the functional groups donate or withdraw electrons from the aromatic system. Based on these results, BDC linker design must balance adsorption performance with degradation via linker dehydrogenation for the design of stable MOFs for acid gas separations.

6.
JACS Au ; 2(8): 1889-1898, 2022 Aug 22.
Article in English | MEDLINE | ID: mdl-36032529

ABSTRACT

Rare-earth polynuclear metal-organic frameworks (RE-MOFs) have demonstrated high durability for caustic acid gas adsorption and separation based on gas adsorption to the metal clusters. The metal clusters in the RE-MOFs traditionally contain RE metals bound by µ3-OH groups connected via organic linkers. Recent studies have suggested that these hydroxyl groups could be replaced by fluorine atoms during synthesis that includes a fluorine-containing modulator. Here, a combined modeling and experimental study was undertaken to elucidate the role of metal cluster fluorination on the thermodynamic stability, structure, and gas adsorption properties of RE-MOFs. Through systematic density-functional theory calculations, fluorinated clusters were found to be thermodynamically more stable than hydroxylated clusters by up to 8-16 kJ/mol per atom for 100% fluorination. The extent of fluorination in the metal clusters was validated through a 19F NMR characterization of 2,5-dihydroxyterepthalic acid (Y-DOBDC) MOF synthesized with a fluorine-containing modulator. 19F magic-angle spinning NMR identified two primary peaks in the isotropic chemical shift (δiso) spectra located at -64.2 and -69.6 ppm, matching calculated 19F NMR δiso peaks at -63.0 and -70.0 ppm for fluorinated systems. Calculations also indicate that fluorination of the Y-DOBDC MOF had negligible effects on the acid gas (SO2, NO2, H2O) binding energies, which decreased by only ∼4 kJ/mol for the 100% fluorinated structure relative to the hydroxylated structure. Additionally, fluorination did not change the relative gas binding strengths (SO2 > H2O > NO2). Therefore, for the first time the presence of fluorine in the metal clusters was found to significantly stabilize RE-MOFs without changing their acid-gas adsorption properties.

7.
Chemistry ; 28(58): e202201926, 2022 Oct 18.
Article in English | MEDLINE | ID: mdl-35867588

ABSTRACT

Understanding the selectivity of metal-organic frameworks (MOFs) to complex acid gas streams will enable their use in industrial applications. Herein, ab initio molecular dynamic simulations (AIMD) were used to simulate ternary gas mixtures (H2 O-NO2 -SO2 ) in rare earth 2,5-dihydroxyterephthalic acid (RE-DOBDC) MOFs. Stronger H2 O gas-metal binding arose from thermal vibrations in the MOF sterically hindering access of SO2 and NO2 molecules to the metal sites. Gas-gas and gas-linker interactions within the MOF framework resulted in the formation of multiple secondary gas species including HONO, HNO2 , NOSO, and HNO3 - . Four gas adsorption sites were identified along with a new de-protonation reaction mechanism not observable through experiment. This study not only provides valuable information on competitive gas binding energies in the MOF, it also provides important chemical insights into transient chemical reactions and mechanisms.

8.
Chem Soc Rev ; 51(8): 3243-3262, 2022 Apr 19.
Article in English | MEDLINE | ID: mdl-35363235

ABSTRACT

Nuclear power will continue to provide energy for the foreseeable future, but it can pose significant challenges in terms of the disposal of waste and potential release of untreated radioactive substances. Iodine is a volatile product from uranium fission and is particularly problematic due to its solubility. Different isotopes of iodine present different issues for people and the environment. 129I has an extremely long half-life of 1.57 × 107 years and poses a long-term environmental risk due to bioaccumulation. In contrast, 131I has a shorter half-life of 8.02 days and poses a significant risk to human health. There is, therefore, an urgent need to develop secure, efficient and economic stores to capture and sequester ionic and neutral iodine residues. Metal-organic framework (MOF) materials are a new generation of solid sorbents that have wide potential applicability for gas adsorption and substrate binding, and recently there is emerging research on their use for the selective adsorptive removal of iodine. Herein, we review the state-of-the-art performance of MOFs for iodine adsorption and their host-guest chemistry. Various aspects are discussed, including establishing structure-property relationships between the functionality of the MOF host and iodine binding. The techniques and methodologies used for the characterisation of iodine adsorption and of iodine-loaded MOFs are also discussed together with strategies for designing new MOFs that show improved performance for iodine adsorption.


Subject(s)
Iodine , Metal-Organic Frameworks , Adsorption , Humans , Ions , Metal-Organic Frameworks/chemistry
9.
ACS Appl Mater Interfaces ; 14(16): 18005-18015, 2022 Apr 27.
Article in English | MEDLINE | ID: mdl-35420771

ABSTRACT

In this Perspective, we present the unique gas adsorption capabilities of porous liquids (PLs) and the value of complex computational methods in the design of PL compositions. Traditionally, liquids only contain transient pore space between molecules that limit long-term gas capture. However, PLs are stable fluids that that contain permanent porosity due to the combination of a rigid porous host structure and a solvent. PLs exhibit remarkable adsorption and separation properties, including increased solubility and selectivity. The unique gas adsorption properties of PLs are based on their structure, which exhibits multiple gas binding sites in the pore and on the cage surface, varying binding mechanisms including hydrogen-bonding and π-π interactions, and selective diffusion in the solvent. Tunable PL compositions will require fundamental investigations of competitive gas binding mechanisms, thermal effects on binding site stability, and the role of nanoconfinement on gas and solvent diffusion that can be accelerated through molecular modeling. With these new insights PLs promise to be an exceptional material class with tunable properties for targeted gas adsorption.

10.
ACS Omega ; 7(9): 7963-7972, 2022 Mar 08.
Article in English | MEDLINE | ID: mdl-35284770

ABSTRACT

Barely porous organic cages (POCs) successfully separate hydrogen isotopes (H2/D2) at temperatures below 100 K. Identifying the mechanisms that control the separation process is key to the design of next-generation hydrogen separation materials. Here, ab initio molecular dynamics (AIMD) simulations are used to elucidate the mechanisms that control D2 and H2 separation in barely POCs with varying functionalization. The temperature and pore size dependence were identified, including the selective capture of D2 in three different CC3 structures (RCC3, CC3-S, and 6ET-RCC3). The temperature versus capture trend was reversed for the 6ET-RCC3 structure, identifying that the D2 and H2 escape mechanisms are unique in highly functionalized systems. Analysis of calculated isotope velocities identified effective pore sizes that extend beyond the pore opening distances, resulting in increased capture in minimally functionalized CC3-S and RCC3. In a highly functionalized POC, 6ET-RCC3, higher velocities of the H isotopes were calculated moving through the restricted pore compared to the rest of the system, identifying a unique molecular behavior in the barely nanoporous pore openings. By using AIMD, mechanisms of H2 and D2 separation were identified, allowing for the targeted design of future novel materials for hydrogen isotope separation.

SELECTION OF CITATIONS
SEARCH DETAIL