Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Cardiovasc Med ; 11: 1350345, 2024.
Article in English | MEDLINE | ID: mdl-39055659

ABSTRACT

Background: Simultaneous multi-slice (SMS) bSSFP imaging enables stress myocardial perfusion imaging with high spatial resolution and increased spatial coverage. Standard parallel imaging techniques (e.g., TGRAPPA) can be used for image reconstruction but result in high noise level. Alternatively, iterative reconstruction techniques based on temporal regularization (ITER) improve image quality but are associated with reduced temporal signal fidelity and long computation time limiting their online use. The aim is to develop an image reconstruction technique for SMS-bSSFP myocardial perfusion imaging combining parallel imaging and image-based denoising using a novel noise map estimation network (NoiseMapNet), which preserves both sharpness and temporal signal profiles and that has low computational cost. Methods: The proposed reconstruction of SMS images consists of a standard temporal parallel imaging reconstruction (TGRAPPA) with motion correction (MOCO) followed by image denoising using NoiseMapNet. NoiseMapNet is a deep learning network based on a 2D Unet architecture and aims to predict a noise map from an input noisy image, which is then subtracted from the noisy image to generate the denoised image. This approach was evaluated in 17 patients who underwent stress perfusion imaging using a SMS-bSSFP sequence. Images were reconstructed with (a) TGRAPPA with MOCO (thereafter referred to as TGRAPPA), (b) iterative reconstruction with integrated motion compensation (ITER), and (c) proposed NoiseMapNet-based reconstruction. Normalized mean squared error (NMSE) with respect to TGRAPPA, myocardial sharpness, image quality, perceived SNR (pSNR), and number of diagnostic segments were evaluated. Results: NMSE of NoiseMapNet was lower than using ITER for both myocardium (0.045 ± 0.021 vs. 0.172 ± 0.041, p < 0.001) and left ventricular blood pool (0.025 ± 0.014 vs. 0.069 ± 0.020, p < 0.001). There were no significant differences between all methods for myocardial sharpness (p = 0.77) and number of diagnostic segments (p = 0.36). ITER led to higher image quality than NoiseMapNet/TGRAPPA (2.7 ± 0.4 vs. 1.8 ± 0.4/1.3 ± 0.6, p < 0.001) and higher pSNR than NoiseMapNet/TGRAPPA (3.0 ± 0.0 vs. 2.0 ± 0.0/1.3 ± 0.6, p < 0.001). Importantly, NoiseMapNet yielded higher pSNR (p < 0.001) and image quality (p < 0.008) than TGRAPPA. Computation time of NoiseMapNet was only 20s for one entire dataset. Conclusion: NoiseMapNet-based reconstruction enables fast SMS image reconstruction for stress myocardial perfusion imaging while preserving sharpness and temporal signal profiles.

2.
Magn Reson Med ; 91(1): 388-397, 2024 01.
Article in English | MEDLINE | ID: mdl-37676923

ABSTRACT

PURPOSE: MR-guided cardiac catheterization procedures currently use passive tracking approaches to follow a gadolinium-filled catheter balloon during catheter navigation. This requires frequent manual tracking and repositioning of the imaging slice during navigation. In this study, a novel framework for automatic real-time catheter tracking during MR-guided cardiac catheterization is presented. METHODS: The proposed framework includes two imaging modes (Calibration and Runtime). The sequence starts in Calibration mode, in which the 3D catheter coordinates are determined using a stack of 10-20 contiguous saturated slices combined with real-time image processing. The sequence then automatically switches to Runtime mode, where three contiguous slices (acquired with partial saturation), initially centered on the catheter balloon using the Calibration feedback, are acquired continuously. The 3D catheter balloon coordinates are estimated in real time from each Runtime slice stack using image processing. Each Runtime stack is repositioned to maintain the catheter balloon in the central slice based on the prior Runtime feedback. The sequence switches back to Calibration mode if the catheter is not detected. This framework was evaluated in a heart phantom and 3 patients undergoing MR-guided cardiac catheterization. Catheter detection accuracy and rate of catheter visibility were evaluated. RESULTS: The automatic detection accuracy for the catheter balloon during the Calibration/Runtime mode was 100%/95% in phantom and 100%/97 ± 3% in patients. During Runtime, the catheter was visible in 82% and 98 ± 2% of the real-time measurements in the phantom and patients, respectively. CONCLUSION: The proposed framework enabled real-time continuous automatic tracking of a gadolinium-filled catheter balloon during MR-guided cardiac catheterization.


Subject(s)
Cardiac Catheterization , Gadolinium , Humans , Cardiac Catheterization/methods , Catheters , Phantoms, Imaging , Heart
3.
Front Cardiovasc Med ; 10: 1233093, 2023.
Article in English | MEDLINE | ID: mdl-37745095

ABSTRACT

Introduction: Magnetic Resonance Imaging (MRI) is a promising alternative to standard x-ray fluoroscopy for the guidance of cardiac catheterization procedures as it enables soft tissue visualization, avoids ionizing radiation and provides improved hemodynamic data. MRI-guided cardiac catheterization procedures currently require frequent manual tracking of the imaging plane during navigation to follow the tip of a gadolinium-filled balloon wedge catheter, which unnecessarily prolongs and complicates the procedures. Therefore, real-time automatic image-based detection of the catheter balloon has the potential to improve catheter visualization and navigation through automatic slice tracking. Methods: In this study, an automatic, parameter-free, deep-learning-based post-processing pipeline was developed for real-time detection of the catheter balloon. A U-Net architecture with a ResNet-34 encoder was trained on semi-artificial images for the segmentation of the catheter balloon. Post-processing steps were implemented to guarantee a unique estimate of the catheter tip coordinates. This approach was evaluated retrospectively in 7 patients (6M and 1F, age = 7 ± 5 year) who underwent an MRI-guided right heart catheterization procedure with all images acquired in an orientation unseen during training. Results: The overall accuracy, specificity and sensitivity of the proposed catheter tracking strategy over all 7 patients were 98.4 ± 2.0%, 99.9 ± 0.2% and 95.4 ± 5.5%, respectively. The computation time of the deep-learning-based segmentation step was ∼10 ms/image, indicating its compatibility with real-time constraints. Conclusion: Deep-learning-based catheter balloon tracking is feasible, accurate, parameter-free, and compatible with real-time conditions. Online integration of the technique and its evaluation in a larger patient cohort are now warranted to determine its benefit during MRI-guided cardiac catheterization.

4.
Magn Reson Med ; 89(6): 2242-2254, 2023 06.
Article in English | MEDLINE | ID: mdl-36763898

ABSTRACT

PURPOSE: To develop a motion-robust reconstruction technique for free-breathing cine imaging with multiple averages. METHOD: Retrospective motion correction through multiple average k-space data elimination (REMAKE) was developed using iterative removal of k-space segments (from individual k-space samples) that contribute most to motion corruption while combining any remaining segments across multiple signal averages. A variant of REMAKE, termed REMAKE+, was developed to address any losses in SNR due to k-space information removal. With REMAKE+, multiple reconstructions using different initial conditions were performed, co-registered, and averaged. Both techniques were validated against clinical "standard" signal averaging reconstruction in a static phantom (with simulated motion) and 15 patients undergoing free-breathing cine imaging with multiple averages. Quantitative analysis of myocardial sharpness, blood/myocardial SNR, myocardial-blood contrast-to-noise ratio (CNR), as well as subjective assessment of image quality and rate of diagnostic quality images were performed. RESULTS: In phantom, motion artifacts using "standard" (RMS error [RMSE]: 2.2 ± 0.5) were substantially reduced using REMAKE/REMAKE+ (RMSE: 1.5 ± 0.4/1.0 ± 0.4, p < 0.01). In patients, REMAKE/REMAKE+ led to higher myocardial sharpness (0.79 ± 0.09/0.79 ± 0.1 vs. 0.74 ± 0.12 for "standard", p = 0.004/0.04), higher image quality (1.8 ± 0.2/1.9 ± 0.2 vs. 1.6 ± 0.4 for "standard", p = 0.02/0.008), and a higher rate of diagnostic quality images (99%/100% vs. 94% for "standard"). Blood/myocardial SNR for "standard" (94 ± 30/33 ± 10) was higher vs. REMAKE (80 ± 25/28 ± 8, p = 0.002/0.005) and tended to be lower vs. REMAKE+ (105 ± 33/36 ± 12, p = 0.02/0.06). Myocardial-blood CNR for "standard" (61 ± 22) was higher vs. REMAKE (53 ± 19, p = 0.003) and lower vs. REMAKE+ (69 ± 24, p = 0.007). CONCLUSIONS: Compared to "standard" signal averaging reconstruction, REMAKE and REMAKE+ provide improved myocardial sharpness, image quality, and rate of diagnostic quality images.


Subject(s)
Heart , Magnetic Resonance Imaging, Cine , Humans , Magnetic Resonance Imaging, Cine/methods , Retrospective Studies , Heart/diagnostic imaging , Respiration , Motion , Artifacts
5.
Front Cardiovasc Med ; 9: 971869, 2022.
Article in English | MEDLINE | ID: mdl-36093156

ABSTRACT

Cardiac MR thermometry shows promise for real-time guidance of radiofrequency ablation of cardiac arrhythmias. This technique uses ECG triggering, which can be unreliable in this situation. A prospective cardiac triggering method was developed for MR thermometry using the active tracking (AT) signal measured from catheter microcoils. In the proposed AT-based cardiac triggering (AT-trig) sequence, AT modules were repeatedly acquired to measure the catheter motion until a cardiac trigger was identified to start cardiac MR thermometry using single-shot echo-planar imaging. The AT signal was bandpass filtered to extract the motion induced by the beating heart, and cardiac triggers were defined as the extremum (peak or valley) of the filtered AT signal. AT-trig was evaluated in a beating heart phantom and in vivo in the left ventricle of a swine during temperature stability experiments (6 locations) and during one ablation. Stability was defined as the standard deviation over time. In the phantom, AT-trig enabled triggering of MR thermometry and resulted in higher temperature stability than an untriggered sequence. In all in vivo experiments, AT-trig intervals matched ECG-derived RR intervals. Mis-triggers were observed in 1/12 AT-trig stability experiments. Comparable stability of MR thermometry was achieved using peak AT-trig (1.0 ± 0.4°C), valley AT-trig (1.1 ± 0.5°C), and ECG triggering (0.9 ± 0.4°C). These experiments show that continuously acquired AT signal for prospective cardiac triggering is feasible. MR thermometry with AT-trig leads to comparable temperature stability as with conventional ECG triggering. AT-trig could serve as an alternative cardiac triggering strategy in situations where ECG triggering is not effective.

SELECTION OF CITATIONS
SEARCH DETAIL
...