Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mar Pollut Bull ; 60(10): 1768-78, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20619863

ABSTRACT

The effects of increased photosynthetic active radiation (PAR), UV radiation (UVR), and nutrient supply on photosynthetic activity, pigment content, C:N ratio and biomass yield were studied in tank cultivated Gracilaria conferta (Rhodophyta). Electron transport rate (ETR) and biliprotein content were higher under high nutrient supply (HNS), obtained from fishpond effluents, compared to low nutrient supply (LNS), in contrast to mycosporine-like amino acids (MAAs) dynamic. The high MAA content in LNS-algae could be explained by higher UVR penetration in the thallus and by the competition for the use of nutrients with other processes. Effective quantum yield decreased after short-term exposure to high irradiance whereas full recovery in shade was produced only under slightly heat shock. UVA radiation provoked an additional decrease in photosynthesis under high water temperature. UVB radiation reversed UVA's negative effect mainly with HNS. Results support that nutrient-sufficiency help G. conferta to resist environmental changes as short-term temperature increase.


Subject(s)
Gracilaria/physiology , Gracilaria/radiation effects , Photosynthesis/physiology , Photosynthesis/radiation effects , Stress, Physiological/radiation effects , Ultraviolet Rays , Amino Acids/metabolism , Carbon/metabolism , Chlorophyll , Fluorescence , Nitrogen/metabolism , Seawater , Temperature
2.
Plant Physiol ; 76(2): 518-24, 1984 Oct.
Article in English | MEDLINE | ID: mdl-16663873

ABSTRACT

The optical properties of marine phytoplankton were examined by measuring the absorption spectra and fluorescence excitation spectra of chlorophyll a for natural marine particles collected on glass fiber filters. Samples were collected at different depths from stations in temperate waters of the Southern California Bight and in polar waters of the Scotia and Ross Seas. At all stations, phytoplankton fluorescence excitation and absorption spectra changed systematically with depth and vertical stability of the water columns. In samples from deeper waters, both absorption and chlorophyll a fluorescence excitation spectra showed enhancement in the blue-to-green portion of the spectrum (470-560 nm) relative to that at 440 nm. Since similar changes in absorption and excitation were induced by incubating sea water samples at different light intensities, the changes in optical properties can be attributed to photoadaptation of the phytoplankton. The data indicate that in the natural populations studied, shade adaptation caused increases in the concentration of photosynthetic accessory pigments relative to chlorophyll a. These changes in cellular pigment composition were detectable within less than 1 day. Comparisons of absorption spectra with fluorescence excitation spectra indicate an apparent increase in the efficiency of sensitization of chlorophyll a fluorescence in the blue and green spectral regions for low light populations.

SELECTION OF CITATIONS
SEARCH DETAIL
...