Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
mSphere ; 9(3): e0081423, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38421172

ABSTRACT

Over a 6-month span, three patients under 5 years old with cutaneous leishmaniasis presented to the Pediatric Infectious Diseases Clinic at the University of Texas Southwestern Medical Center/Children's Health Dallas. None had traveled outside of northern Texas/southern Oklahoma; all had Leishmania mexicana infections confirmed by PCR. We provide case descriptions and images to increase the awareness of this disease among United States (US) physicians and scientists. Two patients responded to fluconazole, but the youngest required topical paromomycin. Combining these cases with guidelines and our literature review, we suggest that (i) higher doses (10-12 mg/kg/day) of fluconazole should be considered in young children to maximize likelihood and rapidity of response and (ii) patients should transition to alternate agents if they do not respond to high-dose fluconazole within 6 weeks. Furthermore, and of particular interest to the broad microbiology community, we used samples from these cases as a proof of concept to propose a mechanism to strain-type US-endemic L. mexicana. For our analysis, we sequenced three housekeeping genes and the internal transcribed sequence 2 of the ribosomal RNA gene. We identified genetic changes that not only allow us to distinguish US-based L. mexicana strains from strains found in other areas of the Americas but also establish polymorphisms that differ between US isolates. These techniques will allow documentation of genetic changes in this parasite as its range expands. Hence, our cases of cutaneous leishmaniasis provide significant evolutionary, treatment, and public health implications as climate change increases exposure to formerly tropical diseases in previously non-endemic areas. IMPORTANCE: Leishmaniasis is a parasitic disease that typically affects tropical regions worldwide. However, the vector that carries Leishmania is spreading northward into the United States (US). Within a 6-month period, three young cutaneous leishmaniasis patients were seen at the Pediatric Infectious Diseases Clinic at the University of Texas Southwestern Medical Center/Children's Health Dallas. None had traveled outside of northern Texas and southern Oklahoma. We document their presentations, treatments, and outcomes and compare their management to clinical practice guidelines for leishmaniasis. We also analyzed the sequences of three critical genes in Leishmania mexicana isolated from these patients. We found changes that not only distinguish US-based strains from strains found elsewhere but also differ between US isolates. Monitoring these sequences will allow tracking of genetic changes in parasites over time. Our findings have significant US public health implications as people are increasingly likely to be exposed to what were once tropical diseases.


Subject(s)
Communicable Diseases , Leishmania mexicana , Leishmaniasis, Cutaneous , Child, Preschool , Humans , Fluconazole/therapeutic use , Leishmania mexicana/genetics , Leishmaniasis, Cutaneous/epidemiology , Leishmaniasis, Cutaneous/parasitology , Texas/epidemiology , United States/epidemiology
2.
medRxiv ; 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38260515

ABSTRACT

Over a six-month span, three patients under five years old with cutaneous leishmaniasis presented to the Pediatric Infectious Diseases Clinic at the University of Texas Southwestern Medical Center/Children's Health Dallas. None had traveled outside of the United States (US); all had confirmed L. mexicana infections by PCR. We provide case descriptions and images to increase the awareness of this disease among US physicians and scientists. Two patients responded to fluconazole, but one required topical paromomycin. Combining these cases with guidelines and our literature review, we suggest that: 1) higher doses (ten-twelve mg/kg/day) of fluconazole should be considered in young children to maximize likelihood and rapidity of response and 2) patients should transition to alternate agents if they do not respond to high-dose fluconazole within six weeks. Furthermore, and of particular interest to the broad microbiology community, we used samples from these cases as a proof-of-concept to propose a mechanism to strain-type US-endemic L. mexicana. For our analysis, we sequenced three housekeeping genes and the internal transcribed sequence 2 of the ribosomal RNA gene. We identified genetic changes that not only allow us to distinguish US-based L. mexicana strains from strains found in other areas of the Americas, but also establish polymorphisms that differ between US isolates. These techniques will allow documentation of genetic changes in this parasite as its range expands. Hence, our cases of cutaneous leishmaniasis provide significant evolutionary, treatment and public health implications as climate change increases exposure to formerly tropical diseases in previously non-endemic areas.

3.
Appl Environ Microbiol ; 86(3)2020 01 21.
Article in English | MEDLINE | ID: mdl-31757831

ABSTRACT

Aspergillus fumigatus is the leading cause of invasive aspergillosis, which in immunocompromised patients results in a mortality rate as high as 90%. Earlier studies showed that HbxA is a global regulator in Aspergillus flavus affecting morphological development and secondary metabolism. Here, we determined its role in A. fumigatus, examining whether HbxA influences the regulation of asexual development, natural product biosynthesis, and virulence of this fungus. Our analysis demonstrated that removal of the hbxA gene caused a near-complete loss of conidial production in the mutant strain, as well as a slight reduction in colony growth. Other aspects of asexual development are affected, such as size and germination of conidia. Furthermore, we showed that in A. fumigatus, the loss of hbxA decreased the expression of the brlA central regulatory pathway involved in asexual development, as well as the expression of the "fluffy" genes flbB, flbD, and fluG HbxA was also found to regulate secondary metabolism, affecting the biosynthesis of multiple natural products, including fumigaclavines, fumiquinazolines, and chaetominine. In addition, using a neutropenic mouse infection model, hbxA was found to negatively impact the virulence of A. fumigatusIMPORTANCE The number of immunodepressed individuals is increasing, mainly due to the greater life expectancy in immunodepressed patients due to improvements in modern medical treatments. However, this population group is highly susceptible to invasive aspergillosis. This devastating illness, mainly caused by the fungus Aspergillus fumigatus, is associated with mortality rates reaching 90%. Treatment options for this disease are currently limited, and a better understanding of A. fumigatus genetic regulatory mechanisms is paramount for the design of new strategies to prevent or combat this infection. Our work provides new insight into the regulation of the development, metabolism, and virulence of this important opportunistic pathogen. The transcriptional regulatory gene hbxA has a profound effect on A. fumigatus biology, governing multiple aspects of conidial development. This is relevant since conidia are the main source of inoculum in Aspergillus infections. Importantly, hbxA also regulates the biosynthesis of secondary metabolites and the pathogenicity of this fungus.


Subject(s)
Aspergillus fumigatus/physiology , Aspergillus fumigatus/pathogenicity , Fungal Proteins/genetics , Regulatory Elements, Transcriptional/genetics , Aspergillus fumigatus/growth & development , Fungal Proteins/metabolism , Reproduction, Asexual , Secondary Metabolism , Virulence
4.
PLoS One ; 14(4): e0216092, 2019.
Article in English | MEDLINE | ID: mdl-31026268

ABSTRACT

The fungus Aspergillus fumigatus is a ubiquitous opportunistic human pathogen capable of causing a life-threatening disease called invasive aspergillosis, or IA, with an associated 40-90% mortality rate in immunocompromised patients. Of the approximately 250 species known in the genus Aspergillus, A. fumigatus is responsible for up to 90% of IA infections. This study focuses on examining the role of the putative polysaccharide synthase cpsA gene in A. fumigatus virulence. Additionally, we evaluated its role in cellular processes that influence invasion and colonization of host tissue. Importantly, our results support that cpsA is indispensable for virulence in A. fumigatus infection of non-neutropenic hosts. Our study revealed that cpsA affects growth and sporulation in this fungus. Absence of cpsA resulted in a drastic reduction in conidiation, and forced overexpression of cpsA produced partially fluffy colonies with low sporulation levels, suggesting that wild-type cpsA expression levels are required for proper conidiation in this fungus. This study also showed that cpsA is necessary for normal cell wall integrity and composition. Furthermore, both deletion and overexpression of cpsA resulted in a reduction in the ability of A. fumigatus to adhere to surfaces, and caused increased sensitivity to oxidative stress. Interestingly, metabolomics analysis indicated that cpsA affects A. fumigatus secondary metabolism. Forced overexpression of cpsA resulted in a statistically significant difference in the production of fumigaclavine A, fumigaclavine B, fumigaclavine C, verruculogen TR-2, and tryprostatin A.


Subject(s)
Aspergillus fumigatus/enzymology , Aspergillus fumigatus/pathogenicity , Fungal Proteins/metabolism , Glycosyltransferases/metabolism , Adhesiveness , Animals , Aspergillus fumigatus/growth & development , Cell Wall/metabolism , Disease Models, Animal , Female , Humans , Metabolomics , Mice, Inbred ICR , Osmotic Pressure , Oxidative Stress , Spores, Fungal/physiology , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL
...