Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Negl Trop Dis ; 13(7): e0007176, 2019 07.
Article in English | MEDLINE | ID: mdl-31276491

ABSTRACT

BACKGROUND: The Madagascar National Strategic Plan for Malaria Control 2018 (NSP) outlines malaria control pre-elimination strategies that include detailed goals for mosquito control. Primary surveillance protocols and mosquito control interventions focus on indoor vectors of malaria, while many potential vectors feed and rest outdoors. Here we describe the application of tools that advance our understanding of diversity, host choice, and Plasmodium infection in the Anopheline mosquitoes of the Western Highland Fringe of Madagascar. METHODOLOGY/PRINCIPAL FINDINGS: We employed a modified barrier screen trap, the QUadrant Enabled Screen Trap (QUEST), in conjunction with the recently developed multiplex BLOOdmeal Detection Assay for Regional Transmission (BLOODART). We captured a total of 1252 female Anopheles mosquitoes (10 species), all of which were subjected to BLOODART analysis. QUEST collection captured a heterogenous distribution of mosquito density, diversity, host choice, and Plasmodium infection. Concordance between Anopheles morphology and BLOODART species identifications ranged from 93-99%. Mosquito feeding behavior in this collection frequently exhibited multiple blood meal hosts (single host = 53.6%, two hosts = 42.1%, three hosts = 4.3%). The overall percentage of human positive bloodmeals increased between the December 2017 and the April 2018 timepoints (27% to 44%). Plasmodium positivity was frequently observed in the abdomens of vectors considered to be of secondary importance, with an overall prevalence of 6%. CONCLUSIONS/SIGNIFICANCE: The QUEST was an efficient tool for sampling exophilic Anopheline mosquitoes. Vectors considered to be of secondary importance were commonly found with Plasmodium DNA in their abdomens, indicating a need to account for these species in routine surveillance efforts. Mosquitoes exhibited multiple blood feeding behavior within a gonotrophic cycle, with predominantly non-human hosts in the bloodmeal. Taken together, this complex feeding behavior could enhance the role of multiple Anopheline species in malaria transmission, possibly tempered by zoophilic feeding tendencies.


Subject(s)
Anopheles/physiology , Anopheles/parasitology , Feeding Behavior , Malaria/prevention & control , Mosquito Control/methods , Animals , Blood , Disease Vectors , Epidemiological Monitoring , Female , Host-Parasite Interactions , Humans , Madagascar , Malaria/transmission , Plasmodium/physiology
2.
J Med Entomol ; 54(4): 1031-1036, 2017 07 01.
Article in English | MEDLINE | ID: mdl-28399303

ABSTRACT

To control malaria in Madagascar, two primary vector control interventions are being scaled up: insecticide-treated nets and indoor residual spraying of bendiocarb, which was implemented in the Malagasy Central Highlands in 2009. The current efficacy of bendiocarb against Anopheles species was evaluated in a small-scale field trial. An experimental hut trial comparing the effectiveness of bendiocarb sprayed on five substrates (cement, wood, tin, mud, and vegetative materials) was carried out against Anopheles species in two study sites located in the eastern foothills of Madagascar. No significant difference was detected in either exophily or blood-feeding rates between treated and untreated huts. The mortality rate was significantly greater in treated huts compared to untreated huts. Efficacy up to 80% was found for 5 mo posttreatment. Although effective, bendiocarb has been used for 7 yr, and therefore an alternative insecticide may be needed to avoid the emergence of resistance.


Subject(s)
Anopheles , Insecticides , Mosquito Control , Pesticide Residues , Phenylcarbamates , Animals , Feeding Behavior/drug effects , Housing , Madagascar
3.
Malar J ; 16(1): 21, 2017 01 09.
Article in English | MEDLINE | ID: mdl-28069024

ABSTRACT

BACKGROUND: The changing malaria situation in Madagascar requires additional knowledge on the physiology and behaviour of local mosquito vectors. However, the absence of established colonies for several anopheline species present in Madagascar constitutes a limiting factor. To avoid labour intensive work and uncertainty for success of establishing Anopheles colonies from Malagasy species, field collections of blood-fed females and in-tube forced oviposition were combined to reliably produce large numbers of F1 progeny. METHODS: Blood-fed females were captured in zebu stables or open zebu parks. Oviposition was induced by enclosing gravid females in eppendorf tubes as initially described for Anopheles funestus. The effect of cold anaesthesia on inducing in-tube forced oviposition and on egg yield was assessed for five Anopheles species, namely Anopheles coustani, An. funestus, Anopheles mascarensis, Anopheles arabiensis and Anopheles squamosus. The production of eggs from in-tube forced oviposition and standard egg laying in cages was compared. RESULTS: For the five anopheline species studied, the in-tube forced oviposition method had different efficacy ranging from 35.6 to 71.1% females willing to lay eggs in tubes. Interestingly, prior anaesthesia increased significantly the proportion of ovipositing females for An. mascarensis. Prior anaesthesia has a marginal effect on the number of eggs produced. However, the overall yield in eggs collected using the in-tube forced oviposition method largely exceeds the number of eggs that can be produced by females free to oviposit in cages. CONCLUSION: The efficiency of the method allowed the production of F1 progeny in numbers sufficiently large for developing detailed analyses of the five species tested, including behavioural studies, insecticide resistance assessment and molecular characterization, as well as vector competence studies. It should be applicable to other anopheline species difficult to colonize.


Subject(s)
Anopheles/growth & development , Entomology/methods , Mosquito Vectors/growth & development , Animals , Cattle , Female , Housing, Animal , Madagascar
4.
Malar J ; 15(1): 293, 2016 05 26.
Article in English | MEDLINE | ID: mdl-27230626

ABSTRACT

BACKGROUND: Indoor residual spraying with insecticide is recommended for malaria control in high-transmission settings. Determination of residual activity of insecticides is essential for the selection of appropriate indoor spraying policy. The present study was undertaken to evaluate the residual effect of bendiocarb, a carbamate insecticide used in Madagascar, on different indoor surfaces in order to elaborate future vector control interventions. METHODS: The residual activity of bendiocarb was evaluated in both experimental huts and houses. Tests in experimental huts on different substrates represented a small scale-field trials. The houses IRS performed in parallel of experimental huts IRS, was done to compare semi-field results and field results. Bioassays according to the World Health Organization (WHO) standard protocol were carried out on different substrates impregnated with bendiocarb using susceptible strains of Anopheles arabiensis and Aedes albopictus. RESULTS: Bendiocarb induced significantly high mortality in treated huts against exposed mosquito (p < 0.005) compared to untreated huts. The mortality is up to the WHO threshold of 80 % during 5 months post-treatment. Using a multivariate analysis, Ae. albopictus mortality decreased significantly from the 3rd month post-treatment. However, An. arabiensis mortality decreased significantly from the 4th month after treatment. Comparing mosquito mortality results from the mud experimental huts and the mud houses showed no significant difference regarding the persistence of bendiocarb on wall. CONCLUSIONS: Current data suggest variable persistence of bendiocarb according to the type of wall surfaces, highlighting the importance of testing insecticide for IRS in local context before using them in large scale. Data from this study validate also the importance of using experimental huts as representative tool to evaluate the effectiveness of an insecticide.


Subject(s)
Aedes/drug effects , Anopheles/drug effects , Insecticides/administration & dosage , Mosquito Control/methods , Phenylcarbamates/administration & dosage , Aedes/physiology , Animals , Anopheles/physiology , Biological Assay , Female , Housing , Madagascar , Survival Analysis
5.
Malar J ; 14: 475, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26620552

ABSTRACT

BACKGROUND: Indoor spraying of insecticides and the use of insecticide-treated bed nets are key strategies for national malaria vector control in the central highlands of Madagascar. During the year 2013, malaria outbreaks were reported by the National Malaria Control Programme in the highlands, including the district of Ankazobe. METHODS: Entomological trapping was carried out in April and May 2013 and in March 2014, using human landing catches, collection of mosquitoes resting in stables and in houses by oral aspirators, and Centers for Disease Control and Prevention light traps. Detection of Plasmodium in mosquitoes was carried out on head and thorax of anopheline females by ELISA, CSP and PCR (Plasmodium falciparum, Plasmodium malariae, Plasmodium vivax, or Plasmodium ovale). Human biting rate (HBR), sporozoite index and entomological infection rate (EIR) were calculated for Anopheles funestus, Anopheles arabiensis, Anopheles mascarensis, and Anopheles coustani. RESULTS: In Ankazobe district, the presence of malaria vectors such as An. funestus, An. arabiensis and An. mascarensis was confirmed, and a new and abundant potential vector, An. coustani was detected. Indeed, one individual of An. funestus and two An. coustani were detected positive with P. falciparum while one An. mascarensis and four An. coustani were positive with P. vivax. For An. coustani, in March 2014, the EIR varied from 0.01 infectious bites/person/month (ipm) outdoors to 0.11 ipm indoors. For An. funestus, in April 2013, the EIR was 0.13 ipm. The highest HBR value was observed for An. coustani, 86.13 ipm outdoors. The highest sporozoite rate was also for An. coustani, 9.5 % of An. coustani caught in stable was sporozoite positive. CONCLUSION: The implication of An. coustani in malaria transmission was not previously mentioned in Madagascar. Its very high abundance and the detection of Plasmodium coupled with an opportunistic feeding behaviour in villages with malaria cases supports its role in malaria transmission in Madagascar.


Subject(s)
Anopheles/parasitology , Disease Outbreaks , Insect Vectors/parasitology , Malaria/epidemiology , Plasmodium/isolation & purification , Animals , Anopheles/classification , Female , Humans , Madagascar/epidemiology , Malaria/transmission , Plasmodium/classification
6.
J Med Entomol ; 52(5): 962-9, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26336259

ABSTRACT

Mosquito diversity and abundance were examined in six Madagascan villages in either arid (Toliary II district) or humid (Mampikony district) ecotypes, each with a history of Rift Valley fever virus transmission. Centers for Disease Control and Prevention light traps without CO2 (LT) placed near ruminant parks and animal-baited net trap (NT) baited with either zebu or sheep/goat were used to sample mosquitoes, on two occasions between March 2011 and October 2011. Culex tritaeniorhynchus (Giles) was the most abundant species, followed by Culex antennatus (Becker) and Anopheles squamosus/cydippis (Theobald/de Meillon). These three species comprised more than half of all mosquitoes collected. The NT captured more mosquitoes in diversity and in abundance than the LT, and also caught more individuals of each species, except for An. squamosus/cydippis. Highest diversity and abundance were observed in the humid and warm district of Mampikony. No host preference was highlighted, except for Cx. tritaeniorhynchus presenting a blood preference for zebu baits. The description of species diversity, abundance, and host preference described herein can inform the development of control measures to reduce the risk of mosquito-borne diseases in Madagascar.


Subject(s)
Biodiversity , Culicidae/physiology , Ecosystem , Insect Vectors/physiology , Animals , Feeding Behavior , Madagascar , Population Dynamics , Rift Valley Fever/transmission , Rift Valley fever virus/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...