Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Chemosphere ; 357: 141981, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38626813

ABSTRACT

Metal-Organic Frameworks (MOFs) are extensively used as electrode material in various sensing applications due to their efficacious porous nature and tunable properties. However, pristine MOFs lack conductive attributes that hinder their wide usage in electrochemical applications. Electropolymerization of several aromatic monomers has been a widely used strategy for preparing conducting electrode materials for various sensing applications in the past decades. Herein, we report a similar approach by employing the electropolymerization method to create a functional polymer layer to enhance the sensitivity of an Aluminium Organic Framework (DUT-4) for the selective detection of Chloramphenicol (CAP) antibiotic in aqueous environment. The combined strategy using the conducting polymer layer with the porous Al MOF provides surpassing electrochemical performance for sensing CAP with regard to the very low detection limit (LOD = 39 nM) and exceptionally high sensitivity (11943 µA mM-1 cm-2). In addition, the fabricated sensor exhibited good selectivity, reproducibility and stability. The developed method was successfully evaluated in various real samples including lake water and river water for CAP detection with good recovery percentages even at lower concentrations.


Subject(s)
Aluminum , Chloramphenicol , Electrochemical Techniques , Limit of Detection , Metal-Organic Frameworks , Polymers , Water Pollutants, Chemical , Chloramphenicol/analysis , Metal-Organic Frameworks/chemistry , Water Pollutants, Chemical/analysis , Aluminum/analysis , Aluminum/chemistry , Polymers/chemistry , Electrochemical Techniques/methods , Reproducibility of Results , Anti-Bacterial Agents/analysis , Electrodes , Rivers/chemistry , Lakes/chemistry , Lakes/analysis
2.
Chemosphere ; 351: 141247, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38244872

ABSTRACT

Being a macrolide antibiotic, the antiviral and anti-inflammatory properties of azithromycin (AZM) were taken advantage of during the COVID-19 pandemic which led to the overuse of AZM resulting in excessive release and accumulation in the waterways and ecosystem causing unpleasant threats to humankind. This demands the necessity for a highly sensitive material being capable of recognizing AZM in wastewater. Mindful of the optical attributes of organic ligand structures, we have constructed a hybrid material by chelating Zn2+ with pyridyl benzimidazole (PBI). The prepared sensor material ZnPBI was characterized using various microscopic and spectroscopic techniques including XRD, FT-IR, HR-SEM, HR-TEM, etc. The proposed sensor material exhibited proficient detection performance selectively towards AZM with a very low detection limit of 72 nM. Two linear ranges between 0 - 70 µM and 70-100 µM were observed corresponding to two different mechanistic pathways. To the best of our knowledge, the utilization of a metal-organic complex (MOC) for the fluorometric detection of AZM has not been explored so far. It is creditworthy to cite that the long-term structural stability of the sensor material was maintained for 100 days in water and it can be reused three times without any depreciation in the sensing activity. A combination of energy transfer routes, adsorption and electrostatic interactions for AZM detection are described experimentally and theoretically which provides insights into the role of MOC as sensing probes.


Subject(s)
Azithromycin , Ecosystem , Humans , Pandemics , Spectroscopy, Fourier Transform Infrared , Anti-Bacterial Agents/therapeutic use
3.
Sci Total Environ ; 851(Pt 2): 158195, 2022 Dec 10.
Article in English | MEDLINE | ID: mdl-35995170

ABSTRACT

The presence of antibiotics in the aqueous environment can alter the water microbiome, inducing antimicrobial resistance genes. Hence, the occurrence of 18 antibiotics belonging to sulfonamides, fluoroquinolones, tetracyclines, phenicols, and macrolides classes were investigated in surface water, groundwater, and sewage treatment plants in Chennai city and the suburbs. Fluoroquinolones had the maximum detection frequency in both influent and effluent samples of urban and suburban STPs, with ofloxacin and ciprofloxacin showing the highest influent concentrations. Erythromycin was the predominant antibiotic in surface water samples with an average concentration of 194.4 ng/L. All the detected antibiotic concentrations were higher in the Buckingham Canal compared to those in Adyar and Cooum rivers, possibly due to direct sewer outfalls in the canal. In groundwater samples, ciprofloxacin showed the highest levels with an average of 20.48 ng/L and the concentrations were comparable to those of surface water. The average sulfamethazine concentration in groundwater (5.2 ng/L) was found to be slightly higher than that of the surface water and much higher than the STP influent concentrations. High levels of ciprofloxacin and sulfamethazine in groundwater may be because of their high solubility and wide use. Moreover, erythromycin was completely removed after treatment in urban STPs; FQs showed relatively lesser removal efficiency (2.4-54%) in urban STPs and (8-44%) in suburban STP. Tetracyclines and phenicols were not detected in any of the samples. Ciprofloxacin and azithromycin in surface water pose a high risk in terms of estimated antibiotic resistance. This study revealed that the measured surface water concentration of antibiotics were 500 times higher for some compounds than the predicted calculated concentrations from STP effluents. Therefore, we suspect the direct sewage outlets or open drains might play an important role in contaminating surface water bodies in Chennai city.


Subject(s)
Groundwater , Water Pollutants, Chemical , Anti-Bacterial Agents/analysis , Sewage , Environmental Monitoring , Sulfamethazine , Azithromycin , Water Pollutants, Chemical/analysis , India , Fluoroquinolones/analysis , Tetracyclines/analysis , Ofloxacin/analysis , Macrolides/analysis , Erythromycin , Risk Assessment , Water , Ciprofloxacin
4.
Environ Res ; 207: 112112, 2022 05 01.
Article in English | MEDLINE | ID: mdl-34600880

ABSTRACT

Graphitic carbon nitride (g-C3N4) is an emerging metal-free photocatalyst, however, engineering the photocatalytic efficiency for the effective degradation of hazardous molecules is still challenging. An unstable and low bandgap CuWO4 was composited with g-C3N4 to achieve synergistic benefits of tuning the visible light responsiveness and stability of CuWO4. CuWO4/g-C3N4 nanocomposite exhibited a relatively high visible light absorption region and the bandgap was modified from 2.77 to 2.53 eV evidenced via UV-DRS. Moreover, the fast electron transfer rate was observed with CuWO4/g-C3N4 nanocomposite as confirmed using PL and photocurrent studies. XRD, FT-IR, and HR-TEM analyses signified the formation of CuWO4/g-C3N4 nanocomposite. CuWO4/g-C3N4 nanocomposite showed enhanced photocatalytic degradation of Tetracycline (TC) about ∼7.4 fold greater than pristine g-C3N4 in 120 min. Notably, the OH• and •O2- radicals played a most significant role in photocatalytic TC degradation. Furthermore, the energy band structure, density of state, and Bader charge analyses of these molecules were performed.


Subject(s)
Nanocomposites , Tetracycline , Anti-Bacterial Agents/chemistry , Catalysis , Light , Nanocomposites/chemistry , Spectroscopy, Fourier Transform Infrared
5.
Nanoscale ; 12(26): 14213-14221, 2020 Jul 14.
Article in English | MEDLINE | ID: mdl-32608424

ABSTRACT

Photocatalysis is one of the facile approaches for efficient solar energy conversion and storage. However, rapid charge carrier recombination considerably decreases solar to energy conversion efficiency. Herein, polaron and bipolaron rich polypyrrole (PPy) has been utilized as a solid support for effective photogenerated charge carrier separation. Simple oxidative polymerization using a high concentration of ammonium persulfate (APS) induces radical cation/bipolaron formation in PPy due to the cleavage of π-bonds as confirmed by electron paramagnetic resonance spectroscopy (EPR). The formation of radical cations led to an increase of the dielectric constant which retards the charge carrier recombination and thereby enhances the conductivity. Moreover, the polarons and bipolarons induced charge carrier separation in photocatalytic H2 production was studied with the well-known g-C3N4 photocatalyst. It is worth mentioning that compared to bare g-C3N4, the PPy supported system showed a drastically enhanced photocatalytic H2 production rate. A maximum H2 production rate of 1851 µmoles per g is achieved, which is ∼51 times higher than that of the bare g-C3N4 catalyst due to efficient charge carrier separation assisted by radical cations/bipolarons. Thus, utilizing this simple polaron and bipolaron rich PPy solid support could be an effective strategy and alternative for using noble metal cocatalysts to enhance charge carrier separation.

6.
Ultrason Sonochem ; 68: 105218, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32575006

ABSTRACT

Graphitic carbon nitride (g-C3N4) is an analog of graphite due to its unique electronic structure. g-C3N4 based materials have been used in photocatalytic applications. However, pure g-C3N4 suffers from major shortcomings which include poor disparity, low surface area and a high recombination rate of photo generated electron-hole pairs that significantly reduce its photocatalytic activity. In this work, self-assembly of g-C3N4 sheet into rod shaped g-C3N4 was developed via a simple polymerisation method. A composite made of g-C3N4 nanorods and rGO (rGO-RCN) was also prepared. The band gap g-C3N4 was shifted from 2.77 to 2.6 eV evidented by UV-DRS data. As a result, rGO-RCN showed a relatively high absorption in the visible region. Moreover, a fast electron transfer rate was observed with rGO-RCN composite as conformed from PL analysis and photocurrent measurement. The formation of nanorod and sheet morphologies was confirmed via TEM analysis. The photocatalytic activities of prepared sheet-g-C3N4 (SCN), Rod g-C3N4 (RCN), reduced graphene oxide supported sheet-g-C3N4 (rGO-SCN) and reduced graphene oxide supported Rod-g-C3N4 (rGO-RCN) were evaluated using a commonly used antibiotic (tetracycline). Among these catalysts, rGO-RCN nanocomposite showed sonophotocatalytic activity 3 times higher compared to pure g-C3N4. This superior sonophotocatalytic activity could be due to enhanced visible light absorption of the material, active sites generated by ultrasound, and the high electron transport property of rGO.


Subject(s)
Anti-Bacterial Agents/chemistry , Graphite/chemistry , Nanostructures/chemistry , Nitriles/chemistry , Photochemical Processes , Catalysis , Models, Molecular , Molecular Conformation
7.
Ultrason Sonochem ; 64: 104866, 2020 Jun.
Article in English | MEDLINE | ID: mdl-31983561

ABSTRACT

Efficient hydrogen production through water splitting has been the challenging task to be achieved in the present context of energy crisis. Among the various catalysts employed, nitrogen doped Titanium dioxide/Reduced graphene oxide (N-TiO2/RGO) nanocomposite has been established to be a promising photocatalytic material for this purpose. However, nuances of doping nitrogen on TiO2 and the type of nitrogen (pyridinic, pyrrolic and graphitic) stabilized on RGO responsible for facilitating the H2 production has not yet been addressed mechanistically. In the present investigation, an attempt has been made to synthesise N-Titanium dioxide/N-Reduced graphene oxide (NTNG) nanocomposite under ultrasonication followed by hydrothermal treatment. A stainlesssteel ultrasonic bath, of 6.5 L tank size (LxBxH) 300 × 150 × 150 mm, was used for ultrasonic treatments. The transducers located at the bottom of the ultrasonic bath generate a frequency of 40 kHz with maximum power of 200 W. A mechanism has been proposed including the nuances of formation and the stabilisation of each type of nitrogen on N-RGO as a function of ultrasonication time. The present work supports the stabilization of a given type of nitrogen on RGO through keto enol tautomerism. XPS and FTIR studies have been undertaken to identify the different types of nitrogen doping and the presence of functional groups respectively. XRD, UV-Vis DRS and PL investigations have been made to establish morphological profile and band gap structure of the nanocomposite. It was observed that pyrrolic type nitrogen stabilized on N-RGO augments the efficiency of photocatalytic activity through hydrogen production by water splitting.

8.
J Environ Manage ; 248: 109246, 2019 Oct 15.
Article in English | MEDLINE | ID: mdl-31323456

ABSTRACT

Nano-size photocatalysts exhibit multifunctional properties that opened the door for improved efficiency in energy, environment, and health care applications. Among the diversity of catalyst Quantum dots are a class of nanomaterials having a particle size between 2 and 10 nm, showing unique optoelectrical properties that are limited to some of the metal, metal oxide, metal chalcogenides, and carbon-based nanostructures. These unique characteristics arise from either pristine or binary/ternary composites where noble metal/metal oxide/metal chalcogenide/carbon quantum dots are anchored on the surface of semiconductor photocatalyst. It emphasized that properties, as well as performance of photocatalytic materials, are greatly influenced by the choice of synthesis methods and experimental conditions. Among the chemical methods, photo-deposition, precipitation, and chemical reduction, are the three most influential synthesis approaches. Further, two types of quantum dots namely metal based and carbon-based materials have been highlighted. Based on the optical, electrical and surface properties, quantum dots based photocatalysts have been divided into three categories namely (a) photocatalyst (b) co-catalyst and (c) photo-sensitizer. They showed enhanced photocatalytic performance for hydrogen production under visible/UV-visible light irradiation. Often, pristine metal chalcogenides as well as metal/metal oxide/carbon quantum dots attached to a semiconductor particle exhibit enhanced the photocatalytic activity for hydrogen production through absorption of visible light. Alternatively, noble metal quantum dots, which provide plenty of defects/active sites facilitate continuous hydrogen production. For instance, production of hydrogen in the presence of sacrificial agents using metal chalcogenides, metal oxides, and coinage metals based catalysts such as CdS/MoS2 (99,000 µmol h-1g-1) TiO2-Ni(OH)2 (47,195 µmol h-1g-1) and Cu/Ag-TiO2 nanotubes (56,167 µmol h-1g-1) have been reported. Among the carbon-based nanostructures, graphitic C3N4 and carbon quantum dots composites displayed enhanced hydrogen gas (116.1 µmol h-1) production via overall water splitting. This review accounts recent findings on various chemical approaches used for quantum dots synthesis and their improved materials properties leading to enhanced hydrogen production particularly under visible light irradiation. Finally, the avenue to improve quantum efficiency further is proposed.


Subject(s)
Graphite , Quantum Dots , Catalysis , Hydrogen , Semiconductors
9.
Ultrason Sonochem ; 57: 62-72, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31208620

ABSTRACT

Herein, we report the simultaneous doping of nitrogen on TiO2 and reduced graphene oxide (N-TiO2/N-RGO) with exclusive stabilization of pyrrolic type nitrogen on RGO network by ultrasonic conditions followed by hydrothermal method for efficient photocatalytic H2 production. Interestingly, during synthesis of N-TiO2/N-RGO composite, pyrrolic type nitrogen in RGO has been exclusively stabilized as confirmed by XPS analysis. The exclusive stabilization of pyrrolic nitrogen changed the optical and electronic properties of N-TiO2/N-RGO nanocomposites by giving two π-electrons to the system for extended conjugation, which enhanced the optical absorption and charge carrier separation efficiency as confirmed by UV-Vis DRS and PL studies. Notably, N-TiO2/N-RGO nanocomposite demonstrated. This enhanced photocatalytic activity can be ascribed to synergetic action of N-TiO2 and N-RGO in optical and photogenerated charge carrier separation. Moreover, the plausible mechanism for exclusive stabilization of pyrrolic type nitrogen and enhanced photocatalytic activity were also proposed.

10.
Ultrason Sonochem ; 50: 302-310, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30270008

ABSTRACT

Incorporation of electron deficient boron atoms along with Au doped TiO2 in the presence of rGO support was synthesized by hydrothermal method and demonstrated for the sonophotocatalytic degradation of TC under visible light illumination. The successful incorporation of electron deficient boron atoms and Au on TiO2 was considerably enhanced the optical absorption towards visible region due to the formation acceptor energy levels below to the conduction band of TiO2 by boron doping and surface plasmonic effect of Au. Moreover, formation of acceptor energy levels and introduction of reduced graphene oxide (rGO) support significantly improved the electron-hole pair separation and transportation which were supported by UV-vis-DRS, photo-current and photoluminescence measurements. The individual effect of photocatalysis and ultrasound for the TC degradation was found to be 45% and 12%, respectively. Importantly, a complete degradation (100%) of TC was achieved with 1.3 folds synergistic effect when ultrasound coupled with photocatalysis in 1 h. The enhanced degradation activity was mainly attributed to combined effect of rapid electron-hole pair separation facilitated by electron deficient B-atoms and rGO support and physical forces of ultrasound as well. In addition, ∼74% of Total Organic Carbon (TOC) removal was achieved within 1 h which further confirmed the effective demineralization of TC by the Au/B-TiO2/rGO composite.

11.
Ultrason Sonochem ; 40(Pt A): 282-288, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28946426

ABSTRACT

Titanium dioxide is the most popular photocatalyst to degrade organic pollutants in air, as well as in water. The principal drawback preventing its commercial application lies in its limited absorption of the visible light (400-700nm), while it is active under UV irradiation (≤387nm). Supporting noble metals in the form of nanoparticles on TiO2 increases its activity in the visible range. However, both the synthesis of noble metal nanoparticles and their deposition on TiO2 are multi-step processes that often require organic solvents. Here, we deposit Ag nanoparticles from AgNO3 on the surface of micrometric TiO2 with H2O as a solvent and under ultrasound irradiation at 30Wcm-2. Ultrasound increases the surface amount of Ag on TiO2 with heterogeneous size distribution of Ag nanoparticles, which are bigger and overlaid (1-20nm vs. 0.5-3nm) compared to the sample obtained in traditional conditions (TEM images). While this change in morphology had no effect on acetone photodegradation under UV light, the 5%, 10%, and 20% Ag-TiO2 degraded 17%, 20% and 24% acetone under visible light, respectively. The 10% by weight Ag-TiO2 sample obtained in absence of ultrasound only degraded 14% acetone in 6h, while the bare TiO2 was not active.

12.
Sci Rep ; 7: 43133, 2017 02 22.
Article in English | MEDLINE | ID: mdl-28225039

ABSTRACT

A new class of pyridyl benzimdazole based Ru complex decorated polyaniline assembly (PANI-Ru) was covalently grafted onto reduced graphene oxide sheets (rGO) via covalent functionalization approach. The covalent attachment of PANI-Ru with rGO was confirmed from XPS analysis and Raman spectroscopy. The chemical bonding between PANI-Ru and rGO induced the electron transfer from Ru complex to rGO via backbone of the conjugated PANI chain. The resultant hybrid metallopolymer assembly was successfully demonstrated as an electron donor in bulk heterojunction polymer solar cells (PSCs). A PSC device fabricated with rGO/PANI-Ru showed an utmost ~6 fold and 2 fold enhancement in open circuit potential (Voc) and short circuit current density (Jsc) with respect to the standard device made with PANI-Ru (i.e., without rGO) under the illumination of AM 1.5 G. The excellent electronic properties of rGO significantly improved the electron injection from PANI-Ru to PCBM and in turn the overall performance of the PSC device was enhanced. The ultrafast excited state charge separation and electron transfer role of rGO sheet in hybrid metallopolymer was confirmed from ultrafast spectroscopy measurements. This covalent modification of rGO with metallopolymer assembly may open a new strategy for the development of new hybrid nanomaterials for light harvesting applications.

13.
Ultrason Sonochem ; 35(Pt B): 655-663, 2017 Mar.
Article in English | MEDLINE | ID: mdl-26968646

ABSTRACT

TiO2-NiO composites with p-n junction were developed by assembling p-type NiO on n-type TiO2 using ultrasound assisted wet impregnation method. The sonophotocatalytic efficiencies of pure TiO2 and TiO2-NiO composites were evaluated under diffused sunlight using methyl orange (MO) as a model pollutant. The impregnation of NiO nanoparticles on TiO2 considerably enhanced the optical absorption in visible region (500-800nm) due to the formation of p-n junctions at the interface between TiO2 and NiO. The internal electric field induced by the p-n junction led to effective separation of electron-hole pairs and thereby generating a large amount of reactive species for the degradation of MO. The individual effect of ultrasound and diffused sunlight for the degradation of MO was found to be 30% and 6%, respectively. A synergy of 4.8 fold was achieved when ultrasound was combined with photocatalytic degradation process in the presence of diffused sunlight. The sonophotocatalytic activity of TiO2-NiO photocatalysts with different NiO loading was also evaluated and 10wt% NiO loading was found to be optimal. Moreover, 66% of Total Organic Carbon (TOC) removal was achieved with the optimized TiO2-NiO composite in 140min. In addition, the TiO2-NiO composite exhibited an enhanced photocurrent response under visible light illumination.

14.
Ultrason Sonochem ; 34: 924-930, 2017 01.
Article in English | MEDLINE | ID: mdl-27773322

ABSTRACT

A recyclable heterogeneous catalyst has been successfully developed for application in a Fenton-type advanced oxidation process without adding external H2O2. LaFeO3 was prepared from Fe(NO3)3·9H2O and La(NO3)·6H2O by a simple sol-gel method and its catalytic efficiency was evaluated for mineralization of 4-chlorophenol using a Fenton-like process. The mineralization process was carried out under ultrasonication in presence of heterogeneous LaFeO3 catalyst with H2O2 that was produced during ultrasonication. The mineralization process was monitored through total organic carbon (TOC) analysis. Very importantly, utmost 5-fold synergism was evidenced by the ultrasound mediated LaFeO3-catalyzed system. Besides, more than twofold synergism was observed by combining the ultrasound assisted LaFeO3 catalytic process and potassium persulfate (KPS) assisted advanced oxidation process. It is worth to mention that complete mineralization (∼96%) of 4-chlorophenol (initial concentration of 1.25×10-4M) was observed within 1h in the presence of LaFeO3 (0.5gL-1) and KPS (1.0mmol) under ultrasonication (40kHz). Even after four cycles, the activity of LaFeO3 remained intact which proved its recyclability. Extremely reusable heterogeneous LaFeO3 catalyst makes the system more interesting from both economic and environmental points of view.

15.
Chemosphere ; 153: 237-43, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27016820

ABSTRACT

TiO2-encapsulated H-ZSM photocatalysts were prepared by physical mixing of TiO2 and zeolites. Pt was immobilized on the surface of the TiO2-encapsulated zeolite (H-ZSM) catalysts by a simple photochemical reduction method. Different weight ratios of both TiO2 and Pt were hybridized with H-ZSM and the catalytic performance of the prepared catalysts was investigated for 2-propanol oxidation in liquid phase and acetaldehyde in gas phase reaction. Around 5-10 wt% TiO2-encapsulated H-ZSM catalysts was found to be optimal amount for the effective oxidation of the organics. Prior to light irradiation, Pt-TiO2-H-ZSM showed considerable amount of catalytic degradation of 2-propanol in the dark, forming acetone as an intermediate. In this study, Pt has played a major and important role on the total oxidation of 2-propanol as well as acetaldehyde. As a result, no residual organics were present in the pores of the zeolites. The catalysts could be reused more than three times without losing their catalytic activity in both phases. The Pt-TiO2-H-ZSM photocatalysts could overcome the problem of strong adsorption of organics in the zeolite pores (after the reaction). Thus, Pt-TiO2-H-ZSM can be used as a potential catalyst for both liquid and gas phase oxidation of organic pollutants.


Subject(s)
2-Propanol/chemistry , Acetaldehyde/chemistry , Environmental Restoration and Remediation/methods , Titanium/chemistry , Water Pollutants, Chemical/chemistry , Zeolites/chemistry , Adsorption , Catalysis , Oxidation-Reduction , Platinum/chemistry
16.
J Nanosci Nanotechnol ; 15(9): 6576-81, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26716214

ABSTRACT

Three-dimensional porous network TiO2 film (PW-film) and nanoparticles film were synthesized on surface of the Ti foil by a facile method to investigate both the photoelectrochemical and photocatalytic properties. The prepared samples were characterized by scanning electron microscopy (SEM), transmission electron microscope (TEM) and X-ray diffraction spectroscopy (XRD) techniques. Methylene blue was used as a target molecule to estimate the photocatalytic activity of the films. Results revealed that the hydrothermal temperature and time have great influence on the crystal type and film morphology of TiO2 catalysts. A higher hydrothermal temperature is benefit for the formation of anatase phase of TiO2 nanotubes with PW-film, which had a large number of nodes. After investigation of the photoelectrochemical properties, a maximum photoconversion efficiency of 4.79% is observed for nanoparticles film with rutile phase of TiO2 under UV light illumination, which was incredible 2 times higher than that of the PW-film with anatase phase. It was shown that the morphology of TiO2 film contributes more significant effect on photocatalytic and photoelectric performance than its crystal type.


Subject(s)
Nanostructures/chemistry , Nanotechnology/methods , Photochemical Processes , Titanium/chemistry , Catalysis , Electrochemical Techniques , Porosity
17.
Ultrason Sonochem ; 15(4): 649-658, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18024153

ABSTRACT

Nano-size TiO2 photocatalysts were prepared by sol-gel and ultrasonic-assisted sol-gel methods using two different sources of ultrasonicator, i.e., a bath type and tip type. The physicochemical characteristics of the catalysts were investigated by BET, XRD and TEM analyses and the photocatalytic properties of the TiO2 catalysts prepared by three different methods were compared. The intrinsic and extrinsic properties of TiO2, such as the particle size, surface area, pore-volume, pore-diameter, crystallinity as well as anatase, rutile and brookite phase ratios, could be controlled by the ultrasonic-assisted sol-gel method. During this preparation method, the effect of such important operating variables as the ultrasonic irradiation time, power density, the ultrasonic sources (bath-type and tip-type), magnetic stirring during synthesis, initial temperatures and size of the reactors are discussed here. It was found that each of the parameters played a significant role in controlling the properties of the TiO2 nano-particles. Among the three different methods, TiO2 photocatalysts prepared by ultrasonic (tip-US) assisted sol-gel possessed the smallest particle size, highest surface area and highest pore-volume than the catalysts prepared by the other two methods. 4-Chlorophenol was used as a pollutant to observe the photocatalytic degradation ability of the prepared photocatalysts and the TiO2 catalysts prepared by the bath-US ultrasonic-assisted sol-gel method were shown to be the most highly active. This is due to their high surface area and high pore-diameter. This study clearly demonstrates the importance and advantages of ultrasonication in the modification and improvement of the photocatalytic properties of mesoporous nano-size TiO2 particles.


Subject(s)
Chlorophenols/chemistry , Nanoparticles/chemistry , Titanium/chemistry , Titanium/radiation effects , Algorithms , Catalysis , Chemical Phenomena , Chemistry, Physical , Crystallization , Gels , Microscopy, Electron, Transmission , Particle Size , Solutions , Ultrasonics , X-Ray Diffraction
18.
J Hazard Mater ; 150(3): 809-17, 2008 Feb 11.
Article in English | MEDLINE | ID: mdl-17597294

ABSTRACT

In situ ozonation has been proposed as a method to remediate soils contaminated with organic pollutants. Soil column experiments were performed on eight different soils in order to investigate the effects of soil properties, such as soil organic matter (SOM) and soil texture on the survival and regrowth of indigenous microorganisms after in situ ozonation. Indigenous microorganisms were found to be very sensitive to ozone in the soil column experiments. The microbial fatality revealed a linear relationship with the SOM content in the range of 1.72-2.42% of SOM content, whereas water content was poorly correlated. Four weeks of incubation of ozone-treated soil samples allowed for the regrowth of indigenous microorganisms with inverse relation to ozonation time. The regrowth was also significantly influenced by the SOM content in the same soil texture. Oxidation and removal rate of hexadecane was affected by particle size distribution. Especially, sand exhibited the highest oxidation rate of hexadecane, which resulted from having the lowest SOM content, water content, and surface area with respect to the other samples. The soil samples ozonated for 90-180 min were determined to exhibit the lowest concentration of hexadecane, with the exception of sand, after 4 weeks of incubation. This study provided insight into the influence of SOM and soil texture on indigenous microbial potential to degrade hexadecane in integrated ozonation and biodegradation.


Subject(s)
Alkanes/metabolism , Oxidants, Photochemical/chemistry , Ozone/chemistry , Soil Microbiology , Soil Pollutants/metabolism , Alkanes/chemistry , Biodegradation, Environmental , Colony Count, Microbial , Oxidants, Photochemical/toxicity , Oxidation-Reduction , Ozone/toxicity , Particle Size , Soil/analysis , Soil Pollutants/chemistry
19.
Ultrason Sonochem ; 11(5): 273-9, 2004 Jul.
Article in English | MEDLINE | ID: mdl-15157855

ABSTRACT

Sonolysis, Fenton-like oxidation (FeOOH-H2O2), and a combination of the two processes were used to facilitate the degradation of para-chlorobenzoic acid (a model compound for free radical mediated reactions). The objective of this study was to investigate the effect of FeOOH and H2O2 dosages on the degradation of para-chlorobenzoic acid (p-CBA) using ultrasound/FeOOH-H2O2. The oxidation rate of p-CBA was measured at various concentrations of H2O2 and FeOOH particles and pH conditions. pH's below the pKa of p-CBA (3.98), showed significantly better degradation of p-CBA than at higher values from 5 to 9. The rates of degradation of p-CBA by FeOOH-H2O2 were enhanced in the presence of ultrasound. The first-order rate constant, k for p-CBA degradation by ultrasound was 4.5 x 10(-3) min(-1), and in the presence of FeOOH-H2O2 this was found to be substantially faster (1.54 x 10(-2) min(-1)). The observed rate enhancements for the degradation of p-CBA can be attributed primarily to the continuous cleaning and chemical activation of the FeOOH surfaces by acoustic cavitation and the accelerated mass transport rates of reactants and products between the solution phase and the FeOOH surface. This new process provides a viable alternative to existing oxidation technologies.

20.
Water Res ; 36(19): 4699-708, 2002 Nov.
Article in English | MEDLINE | ID: mdl-12448511

ABSTRACT

The sonolytic degradation of methyl tert-butyl ether (MTBE) has been investigated at ultrasonic frequency of 20 kHz. The observed pseudo-first-order rate constant decreased from 1.25 x 10(-4) to 5.32 x 10(-5) s(-1) as the concentration of MTBE increased from 2.84 x 10(-2) to 2.84 x 10(-1) mM. The rate of degradation of MTBE increased with the increase of the power density of ultrasonicator and also with the rise in reactor system temperature. In the presence of oxidising agent, potassium persulphate, the sonolytic rate of degradation of MTBE was accelerated substantially. Tert-butyl formate (TBF) and acetone were found to be the major intermediates of the degradation of MTBE. It is found that the ultrasound/Fe2+/H2O2 method is promising process for the degradation of MTBE. More than 95% degradation of MTBE (2.84 x 10(-2) mM) along with its intermediate products has been achieved during the coupled ultrasound/Fe2+/ H2O2 method. Hence, the coupled ultrasound/Fe2+/H2O2 may be a viable method for the degradation MTBE within a short period of time than the ultrasound irradiation process only. A kinetic model, based on the initial rates of degradation of MTBE and TBF, provides a good agreement with the experimental results.


Subject(s)
Carcinogens/chemistry , Methyl Ethers/chemistry , Models, Theoretical , Solvents/chemistry , Water Purification/methods , Hydrogen Peroxide/chemistry , Iron/chemistry , Soil Pollutants , Ultrasonics , Water Supply
SELECTION OF CITATIONS
SEARCH DETAIL
...