Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 9(1): 14469, 2019 10 09.
Article in English | MEDLINE | ID: mdl-31597949

ABSTRACT

Scaffolds and implants in orthopaedics and regenerative dentistry usually fail because of bacterial infections. A promising solution would be the development of biomaterials with both significant regenerative potential and enhanced antibacterial activity. Working towards this direction, fluorapatite was synthesised and doped with Sr2+ and Ce3+ ions in order to tailor its properties. After experiments with four common bacteria (i.e. E. Coli, S. Aureus, B. Subtilis, B. Cereus), it was found that the undoped and the Ce3+ doped fluorapatites present better antibacterial response than the Sr2+ doped material. The synthesised minerals were incorporated into chitosan scaffolds and tested with Dental Pulp Stem Cells (DPSCs) to check their regenerative potential. As was expected, the scaffolds containing Sr2+-doped fluorapatite, presented high osteoconductivity leading to the differentiation of the DPSCs into osteoblasts. Similar results were obtained for the Ce3+-doped material, since both the concentration of osteocalcin and the RUNX2 gene expression were considerably higher than that for the un-doped mineral. Overall, it was shown that doping with Ce3+ retains the good antibacterial profile of fluorapatite and enhances its regenerative potential, which makes it a promising option for dealing with conditions where healing of hard tissues is compromised by bacterial contamination.


Subject(s)
Anti-Bacterial Agents/administration & dosage , Peri-Implantitis/drug therapy , Apatites/chemistry , Biocompatible Materials/chemistry , Cell Differentiation , Cells, Cultured , Cesium/chemistry , Chitosan/chemistry , Dental Pulp/cytology , Humans , Materials Testing , Microscopy, Electron, Scanning , Osteoblasts/cytology , Peri-Implantitis/pathology , Peri-Implantitis/physiopathology , Regenerative Endodontics/methods , Stem Cells/cytology , Strontium/chemistry , Tissue Scaffolds/chemistry
2.
J Mater Chem B ; 3(29): 5991-6000, 2015 Aug 07.
Article in English | MEDLINE | ID: mdl-32262655

ABSTRACT

Mesoporous strontium hydroxyapatite (SrHAp) nanorods (NRs) have been successfully synthesized using a simple and efficient chemical route, i.e. the hydrothermal method. Structural and morphological characterization of the as-synthesized SrHAp NRs have been performed by transmission electron microscopy (TEM) and high angle annular dark field scanning transmission electron microscopy (HAADF-STEM). TEM and HAADF-STEM measurements of the NRs reveal the coexistence of longer and shorter particles with the length ranging from 50 nm to 400 nm and a diameter of about 20-40 nm. Electron tomography measurements of the NRs allow us to better visualize the mesopores and their facets. Two model drugs, hydrophobic risperidone and hydrophilic pramipexole, were loaded into the SrHAp NRs. These nanorods were coated using a modified chitosan (CS) with poly(2-hydroxyethyl methacrylate) (PHEMA), in order to encapsulate the drug-loaded SrHAp nanoparticles and reduce the cytotoxicity of the loaded materials. The drug release from neat and encapsulated SrHAp NRs mainly depends on the drug hydrophilicity. Importantly, although neat SrHAp nanorods exhibit some cytotoxicity against Caco-2 cells, the Cs-g-PHEMA-SrHAp drug-loaded nanorods show an acceptable cytocompatibility.

SELECTION OF CITATIONS
SEARCH DETAIL
...