Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Cancer Med ; 6(9): 2106-2120, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28766915

ABSTRACT

Urothelial carcinoma is the most common form of bladder cancer, but pathway changes that occur with stage-wise progression have not been well defined. We used a metabolomics approach to identify potential metabolic pathways uniquely altered in normal urothelium, nonmuscle-invasive bladder cancer (NMIBC), and muscle-invasive bladder cancer (MIBC). We performed global metabolomic profiling using GC-mass spectrometry (MS) and LC-MS platforms to identify metabolite signatures between normal urothelium and high-grade urothelial carcinoma of different stages. Pathways globally dysregulated in cancer relative to normal urothelium included glucose, tricarboxylic acid (TCA) cycle, lipid, amino acid, and nucleotide pathways. Urothelial carcinoma showed elevated glucose utilization for glycolysis and increased sorbitol pathway intermediates, consistent with Warburg effect. Anaplerosis to sustain energy production suggested by increased late TCA cycle intermediates, amino acids, and dipeptides occurs in bladder cancer. Urothelial carcinoma also shows altered membrane lipid membrane metabolism and differential derivation of nucleic acid components pyrimidine and purine. In stage comparison, MIBC appears to preferentially enhance cyclooxygenase (COX) and lipoxygenase (LOX) signaling, increase heme catabolism, and alter nicotinamide adenine dinucleotide (NAD+) synthesis with a possible influence from associated inflammatory cells. We identify numerous metabolomic alterations in NMIBC and MIBC that likely reflect underlying pathway changes. Differential pathway activity may have value in designing stage-specific novel therapeutics in urothelial carcinoma.


Subject(s)
Carcinoma, Transitional Cell/metabolism , Carcinoma, Transitional Cell/pathology , Metabolomics/methods , Urinary Bladder Neoplasms/metabolism , Urinary Bladder Neoplasms/pathology , Aged , Cell Line, Tumor , Chromatography, Liquid , Citric Acid Cycle , Disease Progression , Female , Gas Chromatography-Mass Spectrometry , Glycolysis , Humans , Male , Middle Aged , Neoplasm Grading , Purines/metabolism , Pyrimidines/metabolism
2.
Cancer Res ; 75(12): 2541-52, 2015 Jun 15.
Article in English | MEDLINE | ID: mdl-25952651

ABSTRACT

Kidney cancer [or renal cell carcinoma (RCC)] is known as "the internist's tumor" because it has protean systemic manifestations, suggesting that it utilizes complex, nonphysiologic metabolic pathways. Given the increasing incidence of this cancer and its lack of effective therapeutic targets, we undertook an extensive analysis of human RCC tissue employing combined grade-dependent proteomics and metabolomics analysis to determine how metabolic reprogramming occurring in this disease allows it to escape available therapeutic approaches. After validation experiments in RCC cell lines that were wild-type or mutant for the Von Hippel-Lindau tumor suppressor, in characterizing higher-grade tumors, we found that the Warburg effect is relatively more prominent at the expense of the tricarboxylic acid cycle and oxidative metabolism in general. Further, we found that the glutamine metabolism pathway acts to inhibit reactive oxygen species, as evidenced by an upregulated glutathione pathway, whereas the ß-oxidation pathway is inhibited, leading to increased fatty acylcarnitines. In support of findings from previous urine metabolomics analyses, we also documented tryptophan catabolism associated with immune suppression, which was highly represented in RCC compared with other metabolic pathways. Together, our results offer a rationale to evaluate novel antimetabolic treatment strategies being developed in other disease settings as therapeutic strategies in RCC.


Subject(s)
Carcinoma, Renal Cell/metabolism , Carcinoma, Renal Cell/pathology , Kidney Neoplasms/metabolism , Kidney Neoplasms/pathology , Cell Line, Tumor , Humans , Metabolomics/methods , Neoplasm Grading , Proteomics/methods , Transfection
3.
PLoS One ; 9(12): e115870, 2014.
Article in English | MEDLINE | ID: mdl-25541698

ABSTRACT

Bladder cancer (BCa) is a common malignancy worldwide and has a high probability of recurrence after initial diagnosis and treatment. As a result, recurrent surveillance, primarily involving repeated cystoscopies, is a critical component of post diagnosis patient management. Since cystoscopy is invasive, expensive and a possible deterrent to patient compliance with regular follow-up screening, new non-invasive technologies to aid in the detection of recurrent and/or primary bladder cancer are strongly needed. In this study, mass spectrometry based metabolomics was employed to identify biochemical signatures in human urine that differentiate bladder cancer from non-cancer controls. Over 1000 distinct compounds were measured including 587 named compounds of known chemical identity. Initial biomarker identification was conducted using a 332 subject sample set of retrospective urine samples (cohort 1), which included 66 BCa positive samples. A set of 25 candidate biomarkers was selected based on statistical significance, fold difference and metabolic pathway coverage. The 25 candidate biomarkers were tested against an independent urine sample set (cohort 2) using random forest analysis, with palmitoyl sphingomyelin, lactate, adenosine and succinate providing the strongest predictive power for differentiating cohort 2 cancer from non-cancer urines. Cohort 2 metabolite profiling revealed additional metabolites, including arachidonate, that were higher in cohort 2 cancer vs. non-cancer controls, but were below quantitation limits in the cohort 1 profiling. Metabolites related to lipid metabolism may be especially interesting biomarkers. The results suggest that urine metabolites may provide a much needed non-invasive adjunct diagnostic to cystoscopy for detection of bladder cancer and recurrent disease management.


Subject(s)
Biomarkers, Tumor/metabolism , Biomarkers, Tumor/urine , Metabolomics , Urinary Bladder Neoplasms/metabolism , Urinary Bladder Neoplasms/urine , Aged , Case-Control Studies , Cohort Studies , Female , Humans , Male , Middle Aged , Prognosis , Urinary Bladder Neoplasms/diagnosis
4.
Prostate ; 73(14): 1547-60, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23824564

ABSTRACT

BACKGROUND: Current diagnostic techniques have increased the detection of prostate cancer; however, these tools inadequately stratify patients to minimize mortality. Recent studies have identified a biochemical signature of prostate cancer metastasis, including increased sarcosine abundance. This study examined the association of tissue metabolites with other clinically significant findings. METHODS: A state of the art metabolomics platform analyzed prostatectomy tissues (331 prostate tumor, 178 cancer-free prostate tissues) from two independent sites. Biochemicals were analyzed by gas chromatography-mass spectrometry and ultrahigh performance liquid chromatography-tandem mass spectrometry. Statistical analyses identified metabolites associated with cancer aggressiveness: Gleason score, extracapsular extension, and seminal vesicle and lymph node involvement. RESULTS: Prostate tumors had significantly altered metabolite profiles compared to cancer-free prostate tissues, including biochemicals associated with cell growth, energetics, stress, and loss of prostate-specific biochemistry. Many metabolites were further associated with clinical findings of aggressive disease. Aggressiveness-associated metabolites stratified prostate tumor tissues with high abundances of compounds associated with normal prostate function (e.g., citrate and polyamines) from more clinically advanced prostate tumors. These aggressive prostate tumors were further subdivided by abundance profiles of metabolites including NAD+ and kynurenine. When added to multiparametric nomograms, metabolites improved prediction of organ confinement (AUROC from 0.53 to 0.62) and 5-year recurrence (AUROC from 0.53 to 0.64). CONCLUSIONS: These findings support and extend earlier metabolomic studies in prostate cancer and studies where metabolic enzymes have been associated with carcinogenesis and/or outcome. Furthermore, these data suggest that panels of analytes may be valuable to translate metabolomic findings to clinically useful diagnostic tests.


Subject(s)
Biomarkers, Tumor , Neoplasm Metastasis/diagnosis , Prostate/metabolism , Prostatic Neoplasms/metabolism , Sarcosine/metabolism , Biomarkers, Tumor/analysis , Biomarkers, Tumor/metabolism , Gas Chromatography-Mass Spectrometry , Humans , Male , Metabolomics , Neoplasm Grading , Neoplasm Invasiveness/diagnosis , Neoplasm Recurrence, Local/diagnosis , Predictive Value of Tests , Prostate/pathology , Prostate-Specific Antigen/blood , Prostatectomy , Prostatic Neoplasms/pathology , Retrospective Studies , Survival Analysis
5.
Clin Chem ; 51(11): 2074-84, 2005 Nov.
Article in English | MEDLINE | ID: mdl-16166171

ABSTRACT

BACKGROUND: Polymorphic thiopurine S-methyltransferase (TPMT) is a major determinant of thiopurine toxicity. METHODS: We extracted 6-thioguanine nucleotides (6-TGNs) and 6-methylmercaptopurine nucleotides (6-MMPNs) from erythrocytes with perchloric acid and converted them to 6-thioguanine (6-TG) and a 6-methylmercaptopurine (6-MMP) derivative during a 60-min acid hydrolysis step. The liquid chromatography system consisted of a C(18) column with an ammonium acetate-formic acid-acetonitrile buffer. 8-Bromoadenine was the internal standard. Analytes were measured with positive ionization and multiple reaction monitoring mode. With PCR-restriction fragment length polymorphism analysis and TaqMan allelic discrimination, common TPMT alleles (*1, *2, *3A, *3B, *3C) were determined in 31 792 individuals. We used perchloric acid extraction, acid hydrolysis, and HPLC with ultraviolet detection to measure erythrocyte 6-TG and 6-MMP nucleotide concentrations in 6189 patients with inflammatory bowel disease receiving azathioprine/6-mercaptopurine therapy. RESULTS: Intra- and interday imprecision were <10% at low and high analyte concentrations. The conversion of 6-TG and 6-MMP nucleoside mono-, di-, and triphosphates was complete after hydrolysis. Allelic frequency for TPMT variant alleles ranged from 0.0063% (*3B) to 3.61% (*3A). Compared with wild types, TPMT heterozygotes had an 8.3-fold higher risk for 6-TGNs >450 pmol/8 x 10(8) erythrocytes (concentration associated with increased risk for leukopenia), but an 8.2-fold lower risk for 6-MMPNs >5700 pmol/8 x 10(8) erythrocytes (concentration associated with increased risk for hepatotoxicity). CONCLUSIONS: The liquid chromatography-tandem mass spectrometry method can be applied to the routine monitoring of thiopurine therapy. The association between TPMT genotype and metabolite concentrations illustrates the utility of pharmacogenetics in the management of patients undergoing treatment with thiopurines.


Subject(s)
Azathioprine/therapeutic use , Erythrocytes/chemistry , Inflammatory Bowel Diseases/drug therapy , Mercaptopurine/therapeutic use , Methyltransferases/genetics , Purine Nucleotides/blood , Adult , Azathioprine/blood , Chromatography, Liquid , Cohort Studies , Drug Therapy, Combination , Female , Genetic Variation , Guanine Nucleotides/blood , Humans , Hydrolysis , Inflammatory Bowel Diseases/blood , Male , Mass Spectrometry , Mercaptopurine/analogs & derivatives , Mercaptopurine/blood , Thionucleotides/blood
6.
Mutat Res ; 573(1-2): 180-94, 2005 Jun 03.
Article in English | MEDLINE | ID: mdl-15829247

ABSTRACT

Several proofs of principle have established that pharmacogenetic testing for mutations altering expression and functions of genes associated with drug disposition and response can decrease the "trial-and-error" dosing and reduce the risk of adverse drug reactions. These proofs of principle include thiopurine methyltransferase and thiopurine therapy, dihydropyrimidine dehydrogenase/thymidylate synthase and 5-fluorouracil therapy, folate enzyme MTHFR and methotrexate therapy, UGT1A1 and irinotecan therapy and CYP450 2C9 and S-warfarin therapy. These evidences advocate for the prospective identification of mutations associated with drug response, serious adverse reactions and treatment failure. More recent evidence with the HLA basis of hypersensitivity to the retroviral agent abacavir demonstrates the potential of pharmacogenetic testing and its pharmacoeconomic implications. With the convergence of rising drug costs and evidence supporting the clinical benefits of pharmacogenetic testing, it will be important to demonstrate the improved net health outcomes attributed to the additional costs for this testing.


Subject(s)
Antineoplastic Agents/therapeutic use , Neoplasms/enzymology , Pharmacogenetics/economics , Pharmacogenetics/methods , Antineoplastic Agents/adverse effects , Antineoplastic Agents/economics , Cytochrome P-450 Enzyme System/metabolism , Dideoxynucleosides/immunology , Histocompatibility Testing , Humans , Mutation , Neoplasms/drug therapy , Warfarin
7.
RNA ; 10(7): 1153-61, 2004 Jul.
Article in English | MEDLINE | ID: mdl-15208450

ABSTRACT

The short lengths of microRNAs (miRNAs) present a significant challenge for detection and quantitation using conventional methods for RNA analysis. To address this problem, we developed a quantitative, sensitive, and rapid miRNA assay based on our previously described messenger RNA Invader assay. This assay was used successfully in the analysis of several miRNAs, using as little as 50-100 ng of total cellular RNA or as few as 1,000 lysed cells. Its specificity allowed for discrimination between miRNAs differing by a single nucleotide, and between precursor and mature miRNAs. The Invader miRNA assay, which can be performed in unfractionated detergent lysates, uses fluorescence detection in microtiter plates and requires only 2-3 h incubation time, allowing for parallel analysis of multiple samples in high-throughput screening analyses.


Subject(s)
MicroRNAs/analysis , MicroRNAs/genetics , Base Sequence , Cell Line , Genetic Techniques , HeLa Cells , Humans , Nucleic Acid Conformation , Oligodeoxyribonucleotides/chemical synthesis , Oligodeoxyribonucleotides/chemistry
8.
Nucleic Acids Res ; 31(11): e66, 2003 Jun 01.
Article in English | MEDLINE | ID: mdl-12771230

ABSTRACT

Here we report proof-of-principle for a microsphere-based genotyping assay that detects single nucleotide polymorphisms (SNPs) directly from human genomic DNA samples. This assay is based on a structure-specific cleavage reaction that achieves single base discrimination with a 5'-nuclease which recognizes a tripartite substrate formed upon hybridization of target DNA with probe and upstream oligonucleotides. The assay is simple with two easy steps: a cleavage reaction, which generates fluorescent signal on microsphere surfaces, followed by flow cytometry analysis of the microspheres. Genomic DNA samples were genotyped for the SNP in the Apolipoprotein E gene at amino acid position 158. The assay successfully scored wild type, heterozygous and homozygous mutants. To our knowledge, this is the first report of a solid-support assay for detection of SNPs directly from genomic DNA without PCR amplification of the target.


Subject(s)
Flow Cytometry , Polymorphism, Single Nucleotide , Sequence Analysis, DNA/methods , Apolipoproteins E/genetics , Fluorescent Dyes/chemistry , Genome, Human , Genotype , Humans , Microspheres , Oligonucleotides/chemistry
9.
J Mol Biol ; 328(3): 537-54, 2003 May 02.
Article in English | MEDLINE | ID: mdl-12706715

ABSTRACT

Structure-specific 5' nucleases play an important role in DNA replication and repair uniquely recognizing an overlap flap DNA substrate and processing it into a DNA nick. However, in the absence of a high-resolution structure of the enzyme/DNA complex, the mechanism underlying this recognition and substrate specificity, which is key to the enzyme's function, remains unclear. Here, we propose a three-dimensional model of the structure-specific 5' flap endonuclease from Pyrococcus furiosus in its complex with DNA. The model is based on the known X-ray structure of the enzyme and a variety of biochemical and molecular dynamics (MD) data utilized in the form of distance restraints between the enzyme and the DNA. Contacts between the 5' flap endonuclease and the sugar-phosphate backbone of the overlap flap substrate were identified using enzyme activity assays on substrates with methylphosphonate or 2'-O-methyl substitutions. The enzyme footprint extends two to four base-pairs upstream and eight to nine base-pairs downstream of the cleavage site, thus covering 10-13 base-pairs of duplex DNA. The footprint data are consistent with a model in which the substrate is bound in the DNA-binding groove such that the downstream duplex interacts with the helix-hairpin-helix motif of the enzyme. MD simulations to identify the substrate orientation in this model are consistent with the results of the enzyme activity assays on the methylphosphonate and 2'-O-methyl-modified substrates. To further refine the model, 5' flap endonuclease variants with alanine point substitutions at amino acid residues expected to contact phosphates in the substrate and one deletion mutant were tested in enzyme activity assays on the methylphosphonate-modified substrates. Changes in the enzyme footprint observed for two point mutants, R64A and R94A, and for the deletion mutant in the enzyme's beta(A)/beta(B) region, were interpreted as being the result of specific interactions in the enzyme/DNA complex and were used as distance restraints in MD simulations. The final structure suggests that the substrate's 5' flap interacts with the enzyme's helical arch and that the helix-hairpin-helix motif interacts with the template strand in the downstream duplex eight base-pairs from the cleavage site. This model suggests specific interactions between the 3' end of the upstream oligonucleotide and the enzyme. The proposed structure presents the first detailed description of substrate recognition by structure-specific 5' nucleases.


Subject(s)
DNA/chemistry , DNA/metabolism , Endodeoxyribonucleases/chemistry , Endodeoxyribonucleases/metabolism , Models, Molecular , Base Sequence , Computer Simulation , DNA Methylation , DNA Mutational Analysis , Flap Endonucleases , Organophosphorus Compounds/chemistry , Pyrococcus furiosus/enzymology , Substrate Specificity
11.
J Am Chem Soc ; 124(27): 7924-31, 2002 Jul 10.
Article in English | MEDLINE | ID: mdl-12095336

ABSTRACT

The structure-specific invasive cleavage reaction is a useful means for sensitive and specific detection of single nucleotide polymorphisms, or SNPs, directly from genomic DNA without a need for prior target amplification. A new approach integrating this invasive cleavage assay and surface DNA array technology has been developed for potentially large-scale SNP scoring in a parallel format. Two surface invasive cleavage reaction strategies were designed and implemented for a model SNP system in codon 158 of the human ApoE gene. The upstream oligonucleotide, which is required for the invasive cleavage reaction, is either co-immobilized on the surface along with the probe oligonucleotide or alternatively added in solution. The ability of this approach to unambiguously discriminate a single base difference was demonstrated using PCR-amplified human genomic DNA. A theoretical model relating the surface fluorescence intensity to the progress of the invasive cleavage reaction was developed and agreed well with experimental results.


Subject(s)
DNA/chemistry , DNA/genetics , DNA/metabolism , Genome, Human , Humans , Models, Genetic , Polymorphism, Single Nucleotide , Substrate Specificity , Surface Properties , Temperature
12.
Nucleic Acids Res ; 30(12): e53, 2002 Jun 15.
Article in English | MEDLINE | ID: mdl-12060691

ABSTRACT

The feasibility of large-scale genome-wide association studies of complex human disorders depends on the availability of accurate and efficient genotyping methods for single nucleotide polymorphisms (SNPs). We describe a new platform of the invader assay, a biplex assay, where both alleles are interrogated in a single reaction tube. The assay was evaluated on over 50 different SNPs, with over 20 SNPs genotyped in study cohorts of over 1500 individuals. We assessed the usefulness of the new platform in high-throughput genotyping and compared its accuracy to genotyping results obtained by the traditional monoplex invader assay, TaqMan genotyping and sequencing data. We present representative data for two SNPs in different genes (CD36 and protein tyrosine phosphatase 1beta) from a study cohort comprising over 1500 individuals with high or low-normal blood pressure. In this high-throughput application, the biplex invader assay is very accurate, with an error rate of <0.3% and a failure rate of 1.64%. The set-up of the assay is highly automated, facilitating the processing of large numbers of samples simultaneously. We present new analysis tools for the assignment of genotypes that further improve genotyping success. The biplex invader assay with its automated set-up and analysis offers a new efficient high-throughput genotyping platform that is suitable for association studies in large study cohorts.


Subject(s)
Polymorphism, Single Nucleotide , Sequence Analysis, DNA/methods , Biotechnology/methods , CD36 Antigens/genetics , Cluster Analysis , Cohort Studies , Genotype , Humans , Protein Tyrosine Phosphatases/genetics , Reproducibility of Results
13.
Biotechniques ; Suppl: 34-8, 40-3, 2002 Jun.
Article in English | MEDLINE | ID: mdl-12083395

ABSTRACT

The cytochrome p450 (CYP) superfamily comprises enzymes that play an essential role in the transformation of medically relevant compounds. Accurate genotyping of polymorphisms in members of this family is drawing increasing interest because certain allelic variants may result in either loss of efficacy or toxic accumulation of therapeutic agents. Debrisoquine 4-hydroxylase, or CYP2D6, is among the most widely studied of the CYPs. The complexity of the CYP2D6 genomic region, including pseudogenes, gene deletions, and gene duplications, has offered numerous challenges to developing a genotyping strategy. We describe a comprehensive CYP2D6 genotyping strategy that employs both a PCR/Invader genotyping assay system and an Invader genomic copy number assay The Invader system is a homogeneous, isothermal, highly specific, and robust signal amplification system. Resultsfrom II CYP2D6 assays in an alle frequency study compare well to published allele frequency values for Caucasians. Further, Invader assays provided unambiguous genotyping determinations for 100% of the 171 samples that yielded a visible PCR product on an agarose gel. A copy number assay yielded only one equivocal result in 205 samples. We identified 17 single-copy individuals and 17 three-copy (or more) individuals.


Subject(s)
Cytochrome P-450 CYP2D6/genetics , DNA Mutational Analysis/instrumentation , DNA Mutational Analysis/methods , DNA Probes , Gene Frequency , Polymorphism, Single Nucleotide , Alleles , Base Sequence , DNA Primers , False Positive Reactions , Genome, Human , Genotype , Humans , Molecular Sequence Data , Phenotype , Polymerase Chain Reaction , Polymorphism, Genetic , Reproducibility of Results , Sensitivity and Specificity , Sequence Analysis, DNA/instrumentation , Sequence Analysis, DNA/methods , Sequence Homology
14.
Hum Mutat ; 19(4): 416-22, 2002 Apr.
Article in English | MEDLINE | ID: mdl-11933196

ABSTRACT

The structure-specific invasive cleavage of single-stranded DNA by 5' nucleases is a useful means for sensitive detection of single-nucleotide polymorphisms or SNPs. The solution-phase invasive cleavage reaction has sufficient sensitivity for direct detection of as few as 600 target molecules with no prior target amplification. One approach to the parallelization of SNP analysis is to adapt the invasive cleavage reaction to an addressed array format. Two surface invasive cleavage reaction strategies were designed and tested using the polymorphic site in codon 158 of the human ApoE gene as a model system, with a synthetic oligonucleotide as target. The upstream oligonucleotide, which is required for the invasive cleavage reaction, was either added in solution (strategy 1), or co-immobilized on the surface along with the probe oligonucleotide (strategy 2). Both strategies showed target-concentration and time-dependent amplification of signal. Parameters that govern the rate of the surface-invasive cleavage reactions are discussed.


Subject(s)
DNA Mutational Analysis/methods , DNA Probes/metabolism , Exodeoxyribonucleases/metabolism , Genetic Testing/methods , Polymorphism, Single Nucleotide/genetics , Apolipoproteins E/genetics , Codon/genetics , DNA/genetics , DNA/metabolism , DNA Probes/chemical synthesis , DNA Probes/genetics , Exodeoxyribonuclease V , Fluorescence , Humans , Kinetics , Nucleic Acid Hybridization , Oligodeoxyribonucleotides/chemical synthesis , Oligodeoxyribonucleotides/genetics , Oligodeoxyribonucleotides/metabolism , Sensitivity and Specificity , Solutions , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...